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Abstract 
 

 This research is aimed at improving the state of the art of GPS algorithms, namely, 

the development of a closed-form positioning algorithm for a stand-alone user and the 

development of a novel differential GPS algorithm for a network of users. 

The stand-alone user GPS algorithm is a direct, closed-form, and efficient new 

position determination algorithm that exploits the closed-form solution of the GPS 

trilateration equations and works in the presence of pseudorange measurement noise for 

an arbitrary number of satellites in view.  A two-step GPS position determination 

algorithm is derived which entails the solution of a linear regression and updates the 

solution based on one nonlinear measurement equation.  In this algorithm, only two or 

three iterations are required as opposed to five iterations that are normally required in the 

standard Iterative Least Squares (ILS) algorithm currently used.  The mathematically 

derived stochastic model-based solution algorithm for the GPS pseudorange equations is 

also assessed and compared to the conventional ILS algorithm.  Good estimation 

performance is achieved, even under high Geometric Dilution of Precision (GDOP) 

conditions.    

The novel differential GPS algorithm for a network of users that has been developed 

in this research uses a Kinematic Differential Global Positioning System (KDGPS) 

approach.  A network of mobile receivers is considered, one of which will be designated 

the ‘reference station’ which will have known position and velocity information at the 

beginning of the time interval being examined.  The measurement situation on hand is 

properly modeled, and a centralized estimation algorithm processing several epochs of 

data is developed.  The effect of uncertainty in the reference receiver’s position and the 
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level of the receiver noise are investigated.  Monte Carlo simulations are performed to 

examine the ability of the algorithm to correctly estimate the non-reference mobile users’ 

position and velocity despite substantial satellite clock errors and receiver measurement 

noise. 
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EFFICIENT GPS POSITIONING DETERMINATION ALGORITHMS 
 
 
 
 

I Introduction 
 
 
 

The NAVSTAR Global Positioning System (GPS) is a space-based satellite radio 

navigation system that provides three-dimensional (3-D) user positioning by solving a set 

of nonlinear trilateration equations using pseudorange measurements.  The current 

method of solving the nonlinear equations is to linearize the pseudorange equations and 

calculate the user position iteratively, starting with a user-provided initial position guess.  

In this research, it is recognized up front that pseudorange measurements are noise 

corrupted.  Hence, the stochastic nature of the measurements is reflected in the GPS 

pseudorange equations from the onset to develop a probabilistically sound GPS solution.  

By stochastically modeling the measurement situation at hand, solving for position or 

velocity becomes a stochastic estimation problem.   

This research consists of two parts, both of which stochastically model the 

pseudorange measurement with random white noise and solve for position or velocity as 

a stochastic estimation problem. The first part is a direct, closed-form and efficient new 

position determination algorithm that exploits the closed-form solution of the GPS 

trilateration equations and works in the presence of pseudorange measurement noise for 

an arbitrary number of satellites in view.  In some applications, a two-step GPS position 

determination algorithm, which entails the solution of a linear regression and updates the 
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solution based on one nonlinear measurement equation, is needed.  In this algorithm, only 

two or three iterations are required, as opposed to five iterations that are required in the 

standard Iterative Least Squares (ILS) algorithm currently used.  The mathematically 

derived stochastic model-based solution algorithm for the GPS pseudorange equations is 

also assessed and compared to the conventional ILS algorithm.  Good estimation 

performance is achieved, even under high Geometric Dilution of Precision (GDOP) 

conditions.    

The second part of this research investigates a Kinematic Differential Global 

Positioning System (KDGPS) algorithm.  A number of mobile receivers is considered, 

one of which will be designated the ‘reference station’, which will have known position 

and velocity information at the beginning of the time interval examined. The 

measurement situation on hand is properly modeled, and a centralized estimation 

algorithm processing several epochs of data is developed.  The effect of uncertainty in the 

reference receiver’s position and the level of receiver noise are investigated.  Monte 

Carlo simulations are performed to correctly estimate the non-reference mobile users’ 

position and velocity despite substantial satellite clock errors and receiver measurement 

noise. 

 
 

1.1 Global Positioning System 

The Global Positioning System consists of a constellation of 24 satellite vehicles 

(SV) arranged in six orbital planes inclined at 55 degrees at an altitude of 20,200km.  The 

constellation continually broadcasts signals that can be utilized by a receiver on the user’s 

platform based on the concept of one-way time of arrival (TOA) ranging.  The GPS 
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receiver determines the range from each visible satellite to the user’s platform.  This 

measured range is called a “pseudorange” since there are errors present on the GPS 

signal.   

There are four unknown parameters involved with GPS positioning, which 

include 3 Cartesian position parameters x, y, and z, and GPS clock error.  To determine a 

solution it is therefore required that at least four GPS SVs be within view of the receiver.  

The pseudoranges from the SVs are used to determine the user’s position with respect to 

Earth.  A typical GPS scenario is shown in Figure 1 below.  SV geometry plays a critical 

part in determining GPS positioning.  Poor SV geometry with respect to the receiver 

produces high Geometric Dilution of Precision (GDOP), which can adversely affect GPS 

position solutions [1]. 

 
 

 

Four Unknowns: X, Y, Z, Coordinate of Receiver
and GPS Provided Time

X, Y, Z, T X, Y, Z, T 

SV1

SV2

SV3 

SV4 

 
  

Figure 1. A GPS Scenario [2] 
 



 

 4

GPS provides two types of services.  The Standard Positioning Service (SPS) is 

designated for the civilian users.  The Precise Positioning Service (PPS) is intended for 

U.S. military and selected government agencies.  Access to PPS signal is controlled 

through two cryptographic features denoted as Antispoofing (AS) and Selective 

Availability (SA).  AS is a technique intended to defeat deception jamming, whereas SA 

is a method to intentionally inject additional error onto the GPS signal to deny full system 

accuracy. 

SA decreased the positioning accuracy of stand-alone receivers to within 100-

meters RMS.  Military receivers utilized de-encryption techniques to remove SA and 

provide position accuracy of 10-meters root-mean-square (RMS) [1].  SA was effectively 

turned off in 2000.  

1.1.1 Stand-Alone GPS Positioning 

Single point, or stand alone, GPS techniques utilize signals broadcast from the 

GPS satellites as depicted in Figure 1.  First, a nominal state (consisting of user position 

coordinates and receiver clock error) can be represented as 

 
 

stateeapproximat
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At a given measurement epoch, the GPS receiver generates a set of n pseudorange 

equations (where n is the number of satellites visible to the receiver).  The pseudorange 

from the user receiver to the ith satellite is the sum of the true range plus the receiver 

range equivalent clock error (i.e., after SV clock, ionospheric, tropospheric, etc. errors 

have been corrected or deemed negligible)  
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uuiuiuii tczzyyxx δρ +−+−+−= 222 )()()(  (1-2)

 
where 

 
(xu, yu, zu)    =  ECEF position coordinates of the user (m)  
(xi, yi, zi)   =  ECEF position coordinates of the ith satellite (m) 
cδtu    =  Range equivalent receiver clock error (m) 

  
These equations are non-linear, and several techniques have been developed to 

solve for the user position.  These include closed-form solutions, Kalman filtering, and 

ILS techniques based on linearization [1, 3].  Since the ILS algorithm is arguably the 

simplest approach, and most commonly used, it will be subsequently explained.  

Since the position of the user is not known, an estimate of the user 

position )ˆ,ˆ,ˆ( zyx  is used to generate a set of estimated pseudoranges to each of the n 

satellites, i.e.,   

 
uuiuiuii tczzyyxx ˆ)ˆ()ˆ()ˆ(ˆ 222 δρ +−+−+−=  (1-3)

 
The relationship between the true and the estimated position with errors can be written as 

 uuu xxx Δ+= ˆ  (1-4)
 

The approximated pseudorange equations (equation (1-3)) are then linearized using a first 

order Taylor series approximation to yield  

 xHρ Δ=Δ  (1-5)
 
where 
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with the elements iρΔ defined as 
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Solving equation (1-5) has the solution  

 ρHx Δ=Δ −1  (1-7)
 
The values obtained for Δx are used to update equation (1-4) for the user position.   

There are three possible cases to be considered.  If there are fewer than four 

satellite pseudoranges available, the position cannot be determined since Δx cannot be 

resolved.  If there are exactly 4 distinct pseudoranges, there will be a unique solution.  

However, if there are more than four satellites visible, as is generally the situation, an 

overdetermined linear system is obtained, and no solution will be available that will 

perfectly solve the equation in Δx.    For this case, the least squares solution concept can 

be utilized. 

Basic least-squares technique yields the solution  

 ρHHHx Δ=Δ − TT 1)(  (1-8)
 
Alternatively, a weighted least-squares solution  
 
 ρCHHCHx ρ Δ=Δ −−− 111 )( p

TT  (1-9)
 
can be used when the pseudorange measurements have different error statistics or when 

the pseudorange measurement errors are correlated.  The matrix Cρ is the measurement 

error covariance matrix (diagonal terms are measurement error variances and off-

diagonal terms are correlation between measurement errors).  It is noted that this 

weighted solution is identical to the unweighted case if Cρ =  I (identity matrix).   
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For the over-determined case, there is generally no solution for Δx that exactly 

solves the measurement equation.  However, measurement residuals, v, can be applied to 

the measurements which would result in  

 υxHρ +Δ=Δ  (1-10)
 
or  
 
 xHρυ Δ−Δ=  (1-11)
 

Single point positioning estimates only receiver clock errors, and requires a 

correction for the satellite clock error.  Satellite clock error corrections can be 

accomplished as described in ICD-GPS-200C [3]: 

 svcorrected tcΔ+= ρρ  (1-12)
 
where  

 
ρcorrected  = pseudorange corrected for SV clock error 
ρ   = original (raw) pseudorange measurement 
Δtsv   = SV clock correction = af0 + af1(t – t0) + af2(t – t0)2 + Δtr 
af0, af1, af2, t0  = SV clock correction parameters from navigation message 
Δtr  = relativity correction = Fe a sin (Ek) 
F   = constant = -4.442807633x10-10 sec/(meter)1/2 
e   = eccentricity from navigation message 

a   = square root of semi-major axis from navigation message 
Ek   = Eccentric anomaly (from SV position calculation) 

 
Stand-alone GPS positioning techniques are fast and reliable.  However, the poor 

accuracy results (typically 30m-50m) are undesirable.  In order to obtain the relative 

accuracy required for uses such as vehicle formation flying, kinematic and DGPS 

techniques must be employed. 
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Figure 2. A Typical DGPS Situation 

 

1.1.2 Differential GPS Positioning Techniques 

The principal idea behind DGPS is that if a reference receiver is available with a 

known position, common errors between it and relatively close mobile receivers viewing 

the same satellites can be removed. Generally, there are two basic DGPS techniques, 

code and carrier-phase based [1]. 

1.1.3  Code-Based Algorithm 

Let the reference receiver, m, have a known position represented as (xm, ym, zm) 

and the reported ith satellite position (via ephemeris data) be represented as (xi, yi, zi).  

The geometric distance from the reference receiver to the ith satellite is  

 222 )()()( mimimi
i
m zzyyxxR −+−+−=  (1-13)

 
The reference receiver is then able to generate a pseudorange measurement to the ith 

satellite as 

 
musermspacem

i
m

i
m tcR δεερ +++= ,,  (1-14)
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where εm,space , εm,control and εm,user are the space, control, and user segment induced 

pseudorange errors, respectively, and  δtm represents the reference receiver’s clock offset 

from GPS system time.  The errors are summarized in Table 1 [1].  The reference 

receiver simply resolves the difference between the generated pseudorange to the ith 

satellite, i
mρ  and it’s geometric range, i

mR , to create the differential correction 

 
musermcontrolmspacem

j
m

i
m

i
m tcR δεεερρ +++=−=Δ ,,,  (1-15)

 
This correction term is utilized by the user, or mobile, receiver, where it is 

differenced with the users’ generated pseudorange measurement to the same satellite 

 

)( ,,,

,,,

musermcontrolmspacem

muserucontroluspaceu
j

u
i
m

i
u

tc

tcR

δεεε

δεεερρ

+++−

++++=Δ−
 (1-16)

 
If the user’s receiver is located relatively nearby the reference receiver, the user’s 

receiver pseudorange equation error components will be nearly identical to those of the 

reference receiver.  Exceptions include errors that are not common to both receivers, i.e. 

multi-path and receiver noise.  Therefore, the corrected user pseudorange is obtained 

 
combinedu

j
ucorrectedu tcR δερ +′+=,  (1-17)

 
where uε ′ is the residual user segment error (multi-path, etc) and combinedtδ  is the combined 

clock offset )( mu tt δδ − . A typical comparison between stand-alone measurements and 

DGPS measurements is given in Table 1 [1]. 
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Table 1. Typical Satellite errors before/after DGPS correction [1] 
 

Segment Source 
 

Error Source 
 

GPS 1σ 
Error (m) 

Typical GPS 1σ 
errors after DGPS 

corrections 
Space Satellite clock stability 

Satellite perturbation 
Selective Availability 
Other (thermal, radiation, etc) 

3.0 
1.0 

32.3 
0.5 

0 
0 
0 
0 

Control Ephemeris prediction error 
Other (thruster performance, etc) 

4.2 
0.9 

0 
0 

User Ionospheric delay 
Tropospheric delay 
Receiver noise and resolution 
Multipath 
Other (inter-channel bias, etc) 

5.0 
1.5 
1.5 
2.5 
0.5 

0 
0 

2.1 
2.5 
0.5 

System UERE Total (rms) 33.3 3.3 
 
 
 1.1.4 Carrier Phase-Based Algorithm 

Obviously, more precise position information can be obtained by measuring the 

amount of shift in the frequency (Doppler shift) of the received signal.  Typically, this 

shift in carrier frequency arises from the relative motion of the GPS satellites to the user 

resulting in Doppler shift frequencies of Hzf 5000±=Δ with respect to the L1 and L2 

carriers.  Thus, 

 TR fff −=Δ  (1-18)
 

where, 
 

fR    = Frequency received at the receiver (Hz) 
fT  = Known transmitted frequency (Hz) 

 
Integration of the Doppler shift offset over time can result in extremely precise 

measurements (centimeter range for the L1 and L2 frequencies).  Thus the carrier phase 

measurements, φ(t), can be calculated by integrating the Doppler measurements Δfmeas 

over the time epoch: 
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∫ +Δ=
t

t
meas tdttft

0

)()()( 0φφ  (1-19)

 
The integer portion of the initial carrier-phase at the start of the integration, φ(t), 

is referred to as the “carrier phase integer ambiguity.”  This integer ambiguity exists 

because the receiver merely begins counting carrier cycles once the user tracks the 

satellite signal.  Resolution of this integer ambiguity is paramount in determining the 

most precise range measurement possible.  Several techniques have been utilized to 

resolve this problem, most popular of which are the least-squares iteration process or 

LAMBDA methods [4, 5, 6].   

1.1.5 General Kinematic GPS Techniques 

In some of the less advanced receivers, user velocity is calculated as the time 

derivative of the estimated position, i.e.,  

 

12

12 )()(
tt

tutu
dt
duu

−
−

≈=&  (1-20)

 
In general, this approach yields poor results and is acceptable only if the user’s velocity is 

constant over the selected time interval. 

Many receivers process Doppler measurements which effectively estimate the 

Doppler frequency of the received satellite.  The satellite velocity vector is computed 

using the ephemeris data and an orbital model that resides within the receiver [1]. At the 

receiver antenna, the received frequency, fR, is given by the classical Doppler equation 

(neglecting relativistic effects) as follows 

 
)

)(
1(

c
ff r

TR
av ⋅

−=  (1-21)
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where, 
 

fT = transmitted satellite signal frequency (known) 
vr = satellite-to-user relative velocity vector  
a = is the unit vector pointing along the line of sight from the user to the satellite 
c = speed of light 

 
The dot product represents the radial component of the satellite-user relative velocity 

vector along the instantaneous line of sight to the satellite vector, ar.  The quantity vr is 

given as the velocity difference 

 uvv &−=r  (1-22)
 

where v is the (known) velocity of the satellite and u&  is the velocity of the user to be 

determined (both referenced to a common ECEF frame).  Therefore, the Doppler offset 

due to the relative motion satisfies 

 
c

ffff TTR
auv ⋅−

−=−=Δ
)( &

 (1-23)

 
There are several techniques [1] to obtain user velocity, u, from the measured 

Doppler frequency, fΔ .   

For the jth satellite, equation (1-23) yields 

 

⎭
⎬
⎫

⎩
⎨
⎧ ⋅−−= ])[(11 jjTR c

ff
jj

auv &  (1-24)

 
and the corrected satellite frequency is given by  

 
jj ToT fff Δ+=  (1-25)

 
where fo is the nominal transmitted frequency and 

jTfΔ is the correction determined from 

the navigation message update. 
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The measured value of the received frequency is in error due to the frequency bias 

offset.  This offset is related to the drift rate of the user clock, relative to GPS time, by 

 )1( ujR tff
j

δ&+=  (1-26)
 

where utδ& is considered positive if the user clock is running fast.  Through algebraic 

manipulation, this can be rewritten as 

 

jj

j

T
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zjuyjuxjuzjzjyjyjxjxj
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f
tcf

azayaxavavav
f

ffc δ&
&&& −++=+++

− )(
 (1-27)

 
where vj, aj is the jth satellite velocity and acceleration component respectively and 

),,( uuu zyx &&&=uv  is the user velocity.  To simplify this equation, we let 

 
zjzjyjyjxjxj
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Tjj
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 (1-28)

 
Since the term 

jTj ff is ≅ 1, equation (1-28) can be written as 

 
uzjuyjuxjuj tcazayaxd δ&&&& −++=  (1-29)

 
We now have four unknowns that can be solved for by using measurements from four 

satellites and using the set of linear equations 
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 (1-30)

 
with the general form 

 Hgd =  (1-31)
 
which can be solved as 

 dHg 1−=  (1-32)
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The previously stated technique for obtaining user velocity, equation (1-32), uses 

measurements that may be corrupted by measurement noise and/or multi-path errors.  A 

Kalman Filter method may be used to compute a smoothed navigation solution.   

The Kalman filter technique is a recursive algorithm that provides optimal 

estimates of user position, velocity, and clock drift (PVT) based on noise statistics and 

current measurements.  The filter contains a dynamical model of the GPS receiver 

platform and outputs a set of user receiver position and velocity state estimates as well as 

the associated error variances.  Kalman Filters entail an approach which simultaneously 

estimates eight states: 3 position states, 3 velocity states, 1 receiver clock bias and 1 

receiver clock drift.  In general, the velocity estimates are only valid for low dynamic 

situations. 

Generally, the dynamical model can be derived from a Taylor series expansion of 

the receiver position u at time t shortly after time t0:   
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 (1-33)

 
In summary, the filter propagates the platform position from one time point to the 

next. Using these propagated states, the receiver calculates the anticipated pseudorange 

and delta pseudorange (the change in pseudorange per epoch for each satellite).  Next, the 

pseudorange and delta pseudoranges are measured and the difference between the 

anticipated and the measured values (residuals or errors in the user position and velocity 

estimates) is taken.  These errors are usually sent back through the algorithm to be 

utilized in future state estimates. 
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Utilizing a Kalman filter allows the use of fewer then 4 satellites and adjusts the 

state estimates to weight the effects of measurement noise.  That is, when measurement 

noise is high, the filter places heavier weights on the state estimates while, on the other 

hand, the filter places heavier weights on the measurements when the noise is low. 

  
 
1.2 Summary 

This chapter described the conventional GPS techniques used to determine user 

position and velocity. The use of DGPS techniques allows the removal of nearly all 

common errors in each of the three segments (User, Control, and Space) as can be seen in 

Table 1.  However, errors that are uncorrelated from receiver to receiver are not removed 

and, in particular, the receiver measurement noise is actually increased.   
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II  A Direct, Closed-Form and Efficient New Position 
Determination Algorithm 

 
 
 

This Chapter presents the development of the closed-form GPS positioning 

algorithm for a stand-alone user.  First, an overview of the closed-form solution is given 

as the basis for the underlying positioning concept.  Second, the theoretical nature of 

using GPS pseudorange measurement equations in the presence of measurement noise for 

position determination is explored.  Third, the closed-form solution algorithm is 

developed, which is followed by the development of a Kalman-like update algorithm.  

The closed-form solution for a scenario with four satellites in view is then examined.  

The algorithm is then summarized step-by-step outlining how the Matlab simulation is 

developed.  This chapter ends with the experiment setup and simulation results. 

 
 

2.1 Overview 

The current method of solving for GPS user’s position is to linearize the 

pseudorange equations and calculate the user position iteratively, starting with a user-

provided initial position guess [8].  For near-earth navigation, the center of the earth is a 

good initial estimate, and the currently used iterative least squares (ILS) algorithm 

converges to the GPS solution.  An area of potential improvement that has been 

investigated in recent years is the use of non-iterative closed-form solutions to the 

nonlinear pseudorange GPS equations.  Closed-form solutions have been developed by 
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Bancroft [9], Leva [10], Krause [11], Abel and Chafee [12, 13], Hoshen [14], and by 

Nardi and Pachter [15, 16]. 

The goal of this research is to develop an efficient new position determination 

algorithm that uses the closed-form solution of the trilateration equations and works in 

the presence of pseudorange measurement noise for an arbitrary number of satellites.  

The new position determination algorithm will focus on the statistics of the position 

estimates and employ a Kalman-like filter.  

2.1.1 Closed-Form Solutions  

The closed-form solution developed herein is an improvement over [15] and [16] 

through the employment of a more rigorous mathematical formulation.  In this research 

and in our previous work reported in [15] and [16], an over-determined system is treated, 

making use of all-in-view (n ≥ 5) satellites as opposed to using just four satellites.  

Moreover, this work departs from a deterministic formulation of the problem ([9], [11], 

[13], and [14]) and specifically addresses the development of a reliable closed-form 

solution that works in the presence of measurement noise.  Previous works, with the 

exception of [17], treated the pseudorange equations as a deterministic set of equations.  

In [18], the deterministic solution of [9] is adapted to account for measurement noise, and 

this approach is further developed in reference [19]. 

In this dissertation, pseudorange measurements are recognized to be noise 

corrupted.  Hence, the stochastic nature of the measurements is reflected in the GPS 

pseudorange equations from the onset to develop a probabilistically sound GPS solution.  

By stochastically modeling the measurement situation at hand, solving for position 

becomes a stochastic estimation problem.  The use of correct stochastic modeling and 
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estimation yields a GPS solution that, in addition to the position estimate, provides an 

estimate of the measurement noise intensity, provided that there are more than five 

satellites in view. 

Thus, the estimation algorithm developed here provides a data-driven position 

(and user clock bias) estimation error covariance prediction.  This prediction introduces a 

new confidence factor into GPS positioning that is critical for the downstream integration 

of GPS and Inertial Navigation Systems (INS) or Synthetic Aperture Radar (SAR) 

sensors.  Moreover, an attractive feature of our solution is its good estimation 

performance, achieved even under poor GDOP conditions and in urban environments 

where the number of visible satellites may be reduced to four.  

Moreover a direct, or autonomous, solution that does not require an initial 

position estimate is attractive for space navigation and for unusual planar array 

configurations using pseudolites, where the iterative process is sensitive to the initial 

position estimate (e.g., the application discussed in references [20] and [21]).  

Furthermore, fast solutions that require fewer iterations and Floating-Point Operations 

(FLOPS) are attractive for high-speed vehicles such as spacecraft, where the 

computational resources may be limited.   

2.1.2  Development of the Two-Step Close-Form Solutions 

The method of linear regression from statistics is used to obtain preliminary 

closed-form estimates of the position and user clock bias.  The number of in-view 

satellites required is n ≥ 5.  In addition, a data-driven estimate of the pseudorange 

measurement noise intensity is derived.  The data-driven estimation of the measurement 

noise intensity requires an additional satellite, thus, the two-step algorithm developed in 
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[22] requires at least six satellites in view (n ≥ 6).  In section 2.4, the second step of the 

new algorithm is discussed in detail.  In this second step, the closed-form solution is used 

in conjunction with one nonlinear measurement equation; thus, an update step, akin to a 

Kalman filter update technique is developed.  This supplementary algorithm uses the 

solution of the closed-form algorithm as initialization.  The two-step algorithm is 

validated in extensive simulations.  Comparisons are drawn with results achieved using 

the conventional ILS algorithm currently used in GPS receivers.  Good position and clock 

bias estimates are obtained using the two step algorithm with two to three iterations only, 

as opposed to five iterations in the ILS algorithm.  Also, the FLOPS count is significantly 

reduced.  

 
  

2.2 Background 

This section is concerned with the theoretical nature of a position determination 

algorithm that uses the closed-form solution of the trilateration equations and works in 

the presence of pseudorange measurement noise for an arbitrary number of satellites.  

This section provides the basis theory that underlines the problem. 

2.2.1 Pseudorange Corruptions 

The GPS uses the radio timing principle to measure range between the satellites 

and the GPS receiver, making it a time-of-arrival system.  If ranges were being measured 

directly, we would be dealing with a multilateration system, and obtaining a position fix 

would be easy.  Under ideal error- and noise-free conditions, if both the satellite and the 

GPS receiver’s clock were perfectly synchronized with GPS time with no error, the 
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measured range would be the true range [23].  However, the GPS receiver measures 

pseudoranges, which are corrupted by the receiver clock bias, measurement noise, and 

other error sources.  The latter include atmospheric delays, satellite clock errors, 

ephemeris errors, and receiver-induced errors. 

2.2.1.1 Receiver Clock Bias 

The receiver clock bias caused by the difference between the receiver clock time 

and GPS time is by far the largest contributor to the difference between pseudorange and 

range.  However, the receiver clock bias is common to the set of simultaneous 

pseudorange measurements, enabling it to be treated as an unknown parameter to be 

estimated along with the user position coordinates; hence the GPS solution consists of the 

user’s three space coordinates and clock bias. 

2.2.1.2 Ephemeris Corrections 

Ephemeris corrections provided to the satellites from the control segment could 

be used to partially eliminate the satellite time error and the ephemeris errors.  Known 

tropospheric and ionospheric error model corrections can be applied to partially 

compensate for tropospheric and ionospheric delay errors, and ionospheric errors can 

essentially be removed using dual-frequency measurements.  Improved receiver designs 

are used to minimize the effects of the receiver-related errors, including receiver noise, 

code loop quantization errors, multipath effects, and interchannel errors.  

2.2.2 Pseudorange Modeling in GPS 

If the residual errors are grouped together under one random variable, v, the GPS 

pseudorange equation can be modeled as the true Euclidean range with an unknown clock 
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bias and measurement noise superimposed; thus, the stochastic nonlinear pseudorange 

measurement equation is 

 
 

( ) ( ) ( ) iiziyixi vbzuyuxuR ++−+−+−= 222  (2-1)

                    
This equation represents the ith corrected pseudorange from satellite i,  i = 1, 2, 3, …, n, 

where n is the number of satellites in view; (ux, uy, uz) are the unknown user position in 

earth-centered, earth-fixed (ECEF) coordinates; (xi, yi, zi) are the known coordinates of 

the ith GPS satellite in ECEF coordinates; b is the unknown range-equivalent user clock 

bias; and vi is zero-mean, Gaussian, pseudorange measurement noise.  It is reasonable to 

assume that all receiver measurements are subject to the same receiver noise intensity; 

therefore, they will have the same variance, σ2.  However, the measurement noise terms 

vi are not correlated between satellites.    

Concerning the measurement noise, v:  Given the number of contributing factors 

to pseudorange noise and the lack of knowledge of their characteristics, it is reasonable to 

assume that the residual pseudorange noise will have a zero-mean Gaussian distribution 

by invoking the Central Limit Theorem which states that the sum of many independent 

random variables, regardless of their contribution, will approach a Gaussian distribution 

[20].  The Gaussian pseudorange noise will not be white due to the correlated nature of 

the encompassed errors and noise.  This concern is alleviated since there is no 

requirement for the pseudorange measurements to be uncorrelated in time, because the 

positioning problem will be treated as a static estimation problem, where a snap shot in 

time is treated as a new static estimation problem.  On the other hand, it is desirable for 

the development of the stochastic estimation that pseudorange noise be uncorrelated 
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across satellites.  This assumption will not hinder the development of the stochastic 

closed-form solution to the GPS pseudorange equation in this research, since the 

pseudorange measurements will be differenced, thereby eliminating some of the effects 

of correlated noise.  Thus, the pseudorange measurement noise is modeled as 

 niNvi ...,,2,1),,0( 2 =∈ σ  (2-2)
                                                

 
2.3 Summary of Results 

This section summarizes the theoretical development of the closed-form solution 

for user position estimation using GPS pseudorange measurements.  The parameter 

vector consisting of user position and receiver clock bias can be defined as 

 
 

T
zyx buuuu ),,,(=

r  

 
It is required to obtain an estimate of the parameter ur .  It is also desirable to predict the 

estimation error covariance.  The GPS position calculation algorithm described in 

Theorem 1 below provides the steps necessary to achieve these objectives.  The 

derivation and proof of correction will be given in the sections that follow. 

2.3.1 Theorem 1 

Assume that the number of satellites in view is n ≥ 6.  Given the ephemeredes 

( ){ }n
iiii zyx 1,, = of the n satellites and the n pseudoranges { }n

iiR 1=  data, a position estimate 

and a prediction of its estimation error covariance can be obtained in two steps: 

Step 1: Form the (n-1) x 4 regressor matrix 
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Then use this information to obtain the preliminary closed-form parameter estimate 

 
 

( ) ZRHHRHu TT
rr 111 ~~ˆ −−−− =  

 
Next calculate the return difference vector 
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The pseudorange measurement noise intensity (σ) estimate can be found from 
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and compute the preliminary parameter estimation error covariance matrix 
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Thus, at the conclusion of Step 1 we have 
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Step 2: Use the estimate produced in Step 1, initialize 

 
 

−−− === 302010
ˆ,ˆ,ˆ uuuuuu zyx
rrr  

 
Form the (n-1) x 4 regressor vector 
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Then form a scalar measurement 
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and the (correlation) vector p 
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Then the intermediate matrix variable Y is 

 
 ( ) ( )−−

−
− +

−
+

−
−

+= u
TT

uT
T

T
u

T

u PphhpP
hp

pp
hp

hPhPY rr
r

r

1
1

1
1
2  

                           
and K is the modified Kalman filter gain, given by 

 
 ⎟
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Update according to                  
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Iterate: 

Akin to the iterated Kalman Filter algorithm used in Extended Kalman Filtering, the 

measurement Zn and the vector h are updated about the improved position estimate.  The 

algorithm iterates using the preliminary estimate and estimation error covariance 

available prior to the update and produced by the linear closed-form algorithm.  Hence, in 

the h and Zn formulae only, set 
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and repeat the calculation of  .ˆ ++

uPandu r
r  The algorithm is hardwired to stop after 3 

iterations as experiments have shown that the solution converges in 2 or 3 iterations. At 

the conclusion of Step 2 the information on the parameter extracted from the data is 

 
 

( )++∈ uPuNu r
rr ,ˆ  

 
The derivation and proof of correctness of the novel GPS positioning algorithm is 

outlined in the next sections, where the respective steps 1 and 2 are discussed, and is also 

adapted to the case where only four satellites are in view. 

 
 
2.4 Closed-Form Solution 

The derivation of the algorithm in step 1 is now presented in detail.  Equation (2-

1) can be written as 

 ( ) ( ) ( ) ( )2222
iiiziyix vbRzuyuxu −−=−+−+−  (2-3)

 
Expanding equation (3) results in the following 
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 (2-4)

                                   
It is noted that the first four terms in equation (2-4) are the unknown variables 

squared and that they are common to all n equations.  This presents an opportunity for 

eliminating the nonlinear terms by differencing; hence, the nth equation is subtracted from 

the remaining (n – 1) equations.  The resulting (n – 1) equations are linear in the 

unknown variables and can be expressed as 
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As a by-product of the preceding operation, the nonlinear nth pseudorange 

equation remains 

 ( ) ( ) ( ) nnznynxn vbzuyuxuR ++−+−+−= 222  (2-6)
 
The nth equation will remain unused in this phase of the development but will 

subsequently be used as an additional “measurement” equation in the Kalman update in 

step 2. The linear regressions in equation (2-5) can be written compactly in matrix 

notation form as                                  

 VuHZ
rrr

+=  (2-7)
                         
where Z

r
 is the measurement vector, given by    
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and its element 
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H is the  (n –1) x 4 regressor matrix given by 
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and ur  is the vector of unknowns, [ ]Tzyx buuuu ,,,=

r . 

Finally, V
r

 is the (n – 1) error vector given by [ ]TnVVVV 121 ,,, −•••=
r

, where 

 ( ) ( ) 1...,,2,1,
2
1 22 −=−+−−−= nivvvvbvRvRV niiniinni  (2-9)

 
To obtain an estimate of ur , the statistics of the equation error V

r
 must be derived from 

the known statistics of the pseudorange measurement noise iv .  According to equation 

(2-2), the following holds: 
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Thus, the statistics of the error vector V
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 are calculated as being                                                  
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The covariance matrix  ( )T

V VVEP
rr

r = can be expressed in tri-diagonal form as 
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 where                 
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and the diagonal elements                          

 ( ) ( ) 1...,,2,1222 −=−+−+= niforbRbRd ini σ  
 

The linear regression in equation (2-7) is used to obtain an estimate of the 

unknown parameters ur .  The aim is to obtain ûr  that minimizes the estimate error as 

weighted by the inverse covariance of the equation error vector.   The minimum variance 

parameter estimate is  

 ( ) ZPHHPHu V
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V
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rr
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111ˆ −−−=  (2-12)
                                              

It is desirable to find a closed-form solution for 1−
VPr  to reduce the computation 

load of our GPS positioning algorithm.  If  VPr  is expressed as RcPV

~2σ=r , where 
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then 
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The elements of the diagonal of R~  are a function of b, the clock bias error, and 

σ , the standard deviation of the measurement noise.  For implementation purposes, it is 

desirable to remove this dependency before finding a solution for 1~ −R .   

Since ( )22 « bRn −σ , and for most positioning applications, ( )2« bRb i − , the 

diagonal elements of  R~  can be simplified as shown in equation (2-15).  To further 

strengthen the validity of the assumptions made to form equation (2-15), Rn can be 

selected as the largest of all available pseudoranges.  Thus, 
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After several algebraic steps and applying the Matrix Inversion Lemma, it is found that 
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A remarkable property of the estimate in equation (2-12) is the fact that it is not 

dependent on σ , the pseudorange measurement noise variance.  Equation (2-14) yields 

the equation error covariance VPr  as simply R~  premultiplied by a scalar quantity.  In 

equation (2-12), the scalar premultiplier of VPr  will cancel out; therefore, the minimum 

variance parameter estimate (position and clock bias) in equation (2-12) can be rewritten 

in an equivalent form as 

 ( ) ZRHHRHu TT
rr 111 ~~ˆ −−−=  (2-17)

 
Equation (2-17) is used for coding the MATLAB [24] algorithm.  It must be noted 

that there are no large matrix inversions associated with this solution since 1~−R  has been 

determined analytically and can be coded directly into the algorithm.  The only inversion 

that needs to be performed is that of the small (4 x 4) matrix ( )HRH T 1~ − , which can easily 

be hardwired into the GPS receiver’s algorithm. 

Furthermore, it follows from equation (2-17) that the covariance of the estimate’s 

error is given by 
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Unlike the solution estimate, the covariance uPr  is dependent on σ ; hence, σ  must be 

known or estimated to estimate the error covariance.  

Substituting equation (2-7) into equation (2-17) yields 

 ( ) ( )
( ) VRHHRHu

VuHRHHRHu
TT

TT

rr

rrr

111

111

~~

~~ˆ

−−−

−−−

+=

+=
 (2-19)

 
Now we substitute equation (19) into the return difference equation: 

 ( )( )
( )( )VRHHRHHI

VRHHRHuHVuHuHZZ
TT

n

TT

r

rrrrrr

111
1

111

~~

~~ˆ~

−−−
−

−−−

−=

+−+=−=
 

 
If we define the matrix ( ) 111

1
~~ −−−

− −≡ RHHRHHIM TT
n , then the return difference can 

be expressed as      

 VMZ
r

=~  (2-20)
                      

We now define the weighted return difference 
 

 ZRe
~~ 1−≡Z  (2-21)

                                                               
where 1−

eR  is obtained from the Cholesky decomposition of R~ : T
ee RRR =~ .  To avoid a 

large matrix inversion, as the size of eR  is (n – 1) x (n – 1), 1−
eR  is expressed as a 

function of 1~ −R :    

 11 ~ −− = RRR T
ee  

     
 We now calculate the scalar quantity 

 ( ) VMRMVZRZZRRZ TTT
e

T
e

T
rr

1111T ~~~~~~~~ −−−− ===ZZ  
                       
 It can be shown that                                             
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 { } ( )MTrc 2T ~~E σ=ZZ  
 
and   

 ( ) 5−= nMTr  (2-23)
                                                 
Thus, 

 { } ( ) ( ) ( )5
2

5
~~

E 2
4

2T −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=−= nbRnc nσσσZZ  (2-24)

 
Rearranging equation (2-24) results in a quadratic equation in 2σ . Solving this 

quadratic equation and substituting                                                          

 ZRZ T ~~~~~ 1T −=ZZ  
   
yields the following data-driven estimate of the measurement noise intensity 2σ : 

 ( ) ( )
5

)~~~(2ˆˆˆ
122

−
+−+−−≈

−

n
ZRZbRbR

T

nnσ  (2-25)

 
In conclusion, the derived linear regression of equation (2-7), which consists of (n 

– 1) equations, requires that (n – 1) be at least 4 to provide an initial estimate of the four 

parameters in ur .  This implies that a minimum satellite availability of 5 is required to 

produce the solution given in equation (2-17).  At least 1 extra satellite is required for the 

data-driven prediction of the estimation error covariance uPr .  Thus, a minimum satellite 

availability of 6 is required to produce an initial estimate of the four parameters in ur  and 

the estimation error covariance.  If the pseudorange measurement noise intensity is 

known, then 5 satellites in view suffice. 

The solution, i.e., the preliminary parameter estimate ûr , is based on n - 1 

equations only, although n measurements are available initially.  This indicates that n 
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equations should be used to obtain the parameter estimate.  The second step of the 

algorithm developed in this dissertation addresses this issue as it uses the remaining nth 

pseudorange equation (see equation (2-6)) as a measurement update in a Kalman 

filtering-like update equation. 

 
 

2.5 Kalman Update Algorithm 

The proof of the correctness of the algorithm in step 2 is now given.  The concept 

behind the Kalman update solution approach is similar to that of a conventional Kalman 

filter.  The closed-form solution above provides a preliminary GPS solution estimate ( ûr ) 

and the associated error covariance matrix ( uPr ).  We now use the nth equation to update 

the previous estimate in the same way this would be accomplished during the update 

cycle of an extended Kalman filter. 

The approach that is used begins with the linearization of equation (2-6) about a 

nominal position estimate.  The linearized equation is then manipulated into the standard 

linear measurement form as described in [25] and used to update the estimate. 

Since the measurement of equation (2-6) is nonlinear, it may be necessary for the 

process to continue in an iterative manner until convergence within a predefined 

tolerance is achieved.  Simulation results show that the algorithm converges after two or 

three iterations. 

It is noteworthy that the Kalman update algorithm presented in this section differs 

from the basic Kalman filter [26, 27] in that the “new” measurement used to update the 

preliminary estimate is correlated with the preliminary estimate.  The conventional 
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Kalman filter update equation does not allow for correlation between the new 

measurement and the previous estimate; hence, a Kalman-like update equation that 

accommodates this correlation and that addresses the specific measurement situation on 

hand needs to be derived. 

The first step in the mathematical development of the Kalman update algorithm is 

to linearize equation (2-6) about a nominal user position (uxo, uyo, uzo) by performing a 

Taylor series expansion and neglecting second- and higher-order terms.  Through 

equation manipulation and rearranging and redefining of terms, the following equation in 

the form of a linear scalar measurement model is obtained: 

 
n

T
n vuhZ +=

r  (2-26)
 

where Zn represents the scalar measurement and is defined as 

 ( ) ( ) ( )
( ) ( ) ( )20

2
0

2
0

000

nznynx

nnznnynnx
nn

zuyuxu

zzuyyuxxu
RZ

−+−+−

−+−+−
+=  

 
and h is a (4 x 1) regressor vector defined as 
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zuyuxu
zu

zuyuxu
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zuyuxu
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h  (2-27)

 
Recall that ur  is the vector of unknowns [ ]Tzyx buuu ,,, , and nv  is the pseudorange 

measurement noise associated with the nth measurement, where ( )2,0~ σNvn .  The 
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initial nominal user position ( )000 ,, zyx uuu  is provided by the estimate of the closed-form 

algorithm in step 1: 

 
zzyyxxo uuuuuu ˆ,ˆ,ˆ

00
rrr

===  
 
Equation (2-26) is in the desired linear measurement model form that can be used to 

update the solution obtained from the preliminary closed-form algorithm in a Kalman-

like update step. 

Now, Zn is actually part of the measurements used to obtain the closed-form 

solution and not a new measurement, as would be the case in a conventional Kalman 

filter application. The noise in the new measurement and the previously derived position 

estimation error are therefore correlated.  This is a violation of the basic assumptions 

used in the derivation of the conventional Kalman filter update equations.  To derive the 

new Kalman-like update equation, it is necessary to know the relationship between the 

noise in the new measurement ( nv ) and the preliminary estimate.  This preliminary 

estimate is provided by the closed-form algorithm. 

The linear regression used for the closed-form algorithm was defined in equation 

(2-7), and the statistics of the noise vector V
r

 were derived in equation (2-9).  The closed-

form algorithm produced an estimate of the GPS unknown parameters, ûr , defined in 

equation (2-17), and an estimate of its covariance matrix ( uPr ), defined in equation (2-18).  

Using this knowledge of the estimated GPS solution, the true GPS parameter vector can 

be expressed as the random variable 

 Wuu
rrr

+= ˆ  (2-28)
 

where ( )uPNW r

r
,0~ .  The correlation of interest between nv  and W

r
 can be defined as 
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 { } { }WvEvWEp nn

rr
=≡  (2-29)

 
To determine the relationship between W

r
 and nv , the linear regression in 

equation (2-7) is multiplied from the left by 1~ −RH T , yielding the expression 

 VRHuHRHZRH TTT
rrr

111 ~~~ −−− +=  (2-30)
 
Equation (2-30) can be solved for ur  to obtain 

 ( ) ( ) VRHHRHZRHHRHu TTTT
rrr 111111 ~~~~ −−−−−− −=  (2-31)

 
The first term on the right hand side of equation (2-31) is recognized from 

equation (2-17) as ûr ; therefore, an expression for W
r

 in terms of V
r

 is obtained: 

 ( ) VRHHRHW TT
rr

111 ~~ −−−=  (2-32)
 
Furthermore, an expression that represents the variance between any single elements of 

V
r

 and nv  is determined by exploiting the noise statistics of V
r

derived previously: 

 { } ( ) 1...,,2,1,E 2 −=−= nibRvV nni σ  (2-33)
 
Equation (2-33) yields the following covariance matrix: 

 

{ } ( )

( ) 11

2

1

1
1

E

xn

nn bRvV

−⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•
•
•

−= σ
r

 (2-34)

 
Using equations (2-32) and (2-34), an expression for the covariance between W

r
 

and nv  is determined: 
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( )( )

( ) 11

1112

1

1
1

~~p

xn

TT
n RHHRHbR
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−−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•
•
•

−= σ  (2-35)

 
Next, an augmented linear regression is formulated by combining equations (2-26) and 

(2-28).  The augmented linear regression is expressed as 

 
aaa VuHZ +=

r  (2-36)
 
where aZ

r
 is the (5 x 1) augmented “measurement” vector defined as 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≡

n
a Z

uZ
r̂r

 

 
aH  is the (5 x 4) augmented regressor defined as 

 
⎥
⎦

⎤
⎢
⎣

⎡
≡

Ta h
I

H  

 
and aV

r
 is the (5 x 1) augmented “measurement noise” vector defined as 

 
⎥
⎦

⎤
⎢
⎣

⎡
≡

n
a v

WV
r

r
 

 
In the derivation that follows, in order to distinguish the preliminary estimate ûr  

and uPr  as produced by the closed-form algorithm from the estimate that will be obtained 

through the Kalman update the following notation is used: 

• −ûr  and −
uPr  represent the estimate and the estimation error covariance prior to 

the update, respectively. 
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• +ûr and +
uPr  represents the estimate and the estimation error covariance 

following the update, respectively. 

To obtain the updated estimates from the augmented linear regression in equation 

(2-36) it is necessary to derive the covariance of the augmented noise vector aV
r

.  Since 

the statistics of the noise components in aV
r

 have already being determined, the equation 

error covariance matrix, aR , is given by 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−

2σT
u

a p
pP

R
s

 (2-37)

 
The updated GPS minimum variance solution estimate and the associated covariance are 

then given by the expressions: 

 
aa

T
au ZRHPu

rr
r

1ˆ −++ =  (2-38)
 ( ) 11 −−+ = aa

T
au HRHPr  (2-39)

 
The expressions in equations (2-38) and (2-39) are sufficient to obtain the 

required updates, but it is desirable to manipulate and reduce the equations into the more 

familiar and computationally efficient form of the classical Kalman filter update equa-

tions. After lengthy manipulations and applying the Matrix Inversion Lemma, the 

Kalman-like update equations in the desired form are obtained: 

 ( )−−+ −+= uhZKuu T
n

ˆˆˆ rrr  (2-40)
 ( )[ ]{ }YhpKhpIP TT

u +−−=+ 1r  (2-41)
 
where the intermediate variable Y is the modified pre-update covariance matrix given by 

 
( ) ( )−−

−
− +

−
+

−
−

+= u
TT

uT
T

T
u

T

u PphhpP
hp

pp
hp

hPhPY rr
r

r

1
1

1
1
2  (2-42)
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and K is the modified Kalman filter gain given by 

 
⎟
⎠
⎞

⎜
⎝
⎛ −
+−

= pYh
Yhhhp

K TT 1
1

1
1  (2-43)

 
The parameter estimate update in equation (2-38) appears to be identical to that of the 

classical Kalman filter update equations.  However, this is not the case since the Kalman 

filter gain, equation (2-43), is not the same.  

Remarks: Note that in the special case of the classical Kalman Filter with no correlation, 

0=p  and −= uPY r .  For this special case the classical Kalman Filter update formulae are 

indeed recovered: 

 
hP

hPh
K u

u
T

−
−+

= r

r1
1  

 ( )−−+ −+= uhZKuu T
n

ˆˆˆ rrr  
 
and 

 ( ) −+ −= u
T

u PKhIP rr  
 

Equations (2-40) to (2-43) are used in the MATLAB implementation of the 

Kalman update algorithm.  The Kalman update algorithm is intended to refine the GPS 

closed-form solution estimate in a direct and non-recursive manner.  However, since the 

measurement in equation (2-7) is nonlinear, it is necessary for the process to continue in 

an iterative manner until convergence within a predefined tolerance is achieved.  Now 

recall that the new measurement used by the Kalman update algorithm is actually the nth 

pseudorange equation in equation (2-7) being linearized about the position estimate 

produced by the closed-form algorithm in step 1.  This implies that how well the 

linearization fits the true unknown GPS parameters is dependent on how good the 
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solution produced by the closed-form algorithm is to begin with.  To alleviate this 

undesired dependency, after the Kalman update algorithm has been applied once and 

produces an improved solution estimate, equation (2-7) is once again linearized about the 

improved position estimate, producing a new and better linear measurement equation.  

This is akin to the iterated Kalman filter algorithm used in extended Kalman filtering.   

The Kalman update algorithm is applied a second time using the preliminary 

estimate and estimation error covariance available prior to the update and produced by 

the linear closed-form algorithm, not the solution obtained as a result of the previous 

application of the Kalman update.  Theoretically, this process can be continued 

recursively until convergence to the best possible solution is achieved; however, for the 

scenario that was used in the experiment, after two or three applications, the change in 

the solution estimate was insignificant.  Hence, the algorithm was hardwired to perform 

three iterations. 

    
 

2.6 Position Determination Algorithm for Four Satellites in 

View 

In previous sections, it was required that n ≥ 5.  The derivation in step 1 of the 

algorithm for the case of four satellites in view is now investigated.  Setting n = 4, 

equation (2-5) becomes: 

 ( ) ( ) ( ) ( )

( )

( )2
4

2
444

22
4

22
4

22
4
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2

4444

2
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2
1
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bRRuzzuyyuxx

iiii

iiii
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−+−+−+−

 (2-44)
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The linear regression in equation (2-44) can be compactly written in matrix notation form 

as 

 VuHZ
rrr

+=  (2-45)
 
where Z

r
 is the measurement vector, now given by 
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and the element 
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4
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4
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4
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1

iiiii zzyyxxRRZ −+−+−+−=  (2-46)

 
H is the (3 x 4) regressor matrix given by 
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Finally, V

r
 is the (1 x 3) error vector given by [ ]TVVVV 321 ,,=

r
, where 

 ( ) ( ) 3,2,1,
2
1 2

4
2

444 andivvvvbvRvRV iiiii =−+−+−=  (2-48)

 
We now have three linear equations in four unknowns, and a stand-alone 

parameter estimate can not be obtained.  The nonlinear fourth pseudorange equation is 

yet to be used: 

 ( ) ( ) ( ) 4
2

4
2

4
2

44 vbzuyuxuR zyx ++−+−+−=  (2-49)
 

As in step 2 in the Kalman update algorithm, the fourth equation can be linearized about 

a nominal user position (uxo, uyo, uzo) by performing a Taylor series expansion and 
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neglecting second- and higher-order terms.  Through equation manipulation, the 

following equation in the form of a linear scalar measurement model is obtained: 

 
44 vuhz T +=

r
 (2-50)

 
where z4 represents the scalar measurement and is defined as 
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and h is a 4 x 1 vector defined as  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−+−

−

−+−+−

−

−+−+−

−

≡

1

)()()(
)(

)()()(

)(

)()()(
)(

2
40

2
40

2
40

40

2
40

2
40

2
40

40

2
40

2
40

2
40

40

zuyuxu
zu

zuyuxu

yu

zuyuxu
xu

h

zyx

z

zyx

y

zyx

x

 (2-52)

 
Recall that ur  is the vector of unknowns, [ ]Tzyx buuu ,,, , and 4v  is the pseudorange 

measurement noise associated with the fourth measurement, where ( )2
4 ,0~ σNv .  The 

initial nominal user position is assumed to be at the origin of the ECEF coordinates  

 0,0,0 00 === zyxo uuu  
 
Combining equations (2-45) and (2-51), we now have an augmented measurement model 

represented by 
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(2-53)

 



 

 44

The statistics of the equation error V
r

 and 4v  are the same as previously derived in the 

closed form for an arbitrary number of satellites in view.   Thus, the expected value 

between these two errors can be calculated as 
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Using equations (2-10) and (2-54), the (4 x 4) covariance matrix 

augVPr can be expressed as 
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where  

 
( ) 2

4

2

2
bRc −+=

σ  

 ( )bRc −= 41  
 
and the diagonal elements 

 ( ) ( ) 3,2,122
4

2 andiforbRbRd ii =−+−+=σ  
 
Thus, the linear regression in equation (2-53) can be used to obtain an estimate of the 

unknown parameters ur .  The aim is to obtain ûr  that minimizes the estimation error as 

weighted by the inverse covariance of the equation error vector. 

The minimum variance parameter estimate is  
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 ( ) augV
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To reduce the computation load of our GPS positioning algorithm, 

augVPr  is expressed as 

RcP
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Then 

 1
2

1 ~1 −− = R
c

P
augV σ
r  (2-58)

 
Again, since ( )2

4
2 bR −〈〈σ , and for most positioning applications, ( )2bRb i −〈〈 , 

the diagonal elements of  R~  can be simplified as shown below in equation (2-59).  To 

further strengthen the validity of the assumptions made to form equation (2-59), R4 can 

be selected as the largest of all available pseudoranges.  Thus, 
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and 1/c can be approximated as  
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Equation (2-61) shows that the error covariance VPr  is simply R~   premultiplied by 

a scalar quantity.  In equation (2-56) the scalar premultiplier of VPr  will cancel out; 

therefore, the minimum variance parameter estimate in equation (2-56) can be rewritten 

as 

 ( ) ZRHHRHu T
augaug

T
aug

rr 111 ~~ˆ −−−=  (2-62)
 
Equation (2-62) is used for coding the MATLAB [24] algorithm.  Given that equation (2-

49) is nonlinear, a few iterations will be required in order to convert the estimated 

position ûr  to within a predefined tolerance. 

 

2.7 Experimental Setup 

The closed-form linear regression algorithm developed in this dissertation 

requires at least six pseudoranges measurements to produce a stand-alone GPS solution 

and a prediction of the position estimation error covariance.  In terms of satellite 

availability, the worst-case scenario occurs at latitudes in the range of 35˚ - 55˚, where 

there are six or fewer GPS satellites available 20 percent of the time.  However, more 

than six satellites are in view most of the time.  Therefore, for the case of n = 4, the four 

pseudorange measurements are randomly selected from the available pseudorange 

measurements.  For n ≥ 5, the two-step algorithm uses all n available pseudorange 

measurements to produce the GPS solution.  Satellite availability is not dependent on user 

position longitude; hence, a fixed user position in the 35˚ - 55˚ latitude range over the 

continental United States, 40˚ N latitude, 105˚ W longitude, at an altitude of 300 m, was 

selected. 
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The geographic coordinates are converted to ECEF coordinates and used to 

generate the experimental datasets using GPSoft’s Satellite Navigation Toolbox for 

MATLAB [28].  The Satellite Navigation Toolbox is used to generate realistic GPS 

satellite position data from which true ranges can be calculated between all in-view GPS 

satellites and the position of the receiver.  After adding a range equivalent user clock bias 

of 1000 m to all the ranges, a zero mean random noise of preselected standard deviation σ 

= 100 m is superimposed to represent the Gaussian measurement noise. 

The Satellite Navigation Toolbox has the capability of simulating realistic noise-

corrupted pseudorange measurements which can be applied directly to the GPS position 

determination algorithm, as would be the case in a real-world scenario.  In our 

experiments, the GPSoft toolbox was used for simulating just the GPS satellite ephemeris 

data, and the simulated pseudoranges were generated as described above.  This was done 

for the following reasons: 

• It provides a more structured dataset for analysis of the algorithm, since only 

the desired effects are being considered and the amount of noise corruption on the 

pseudorange measurements is exactly controlled; and 

• Since the pseudoranges are produced starting from exactly known position 

coordinates, comparisons against the true position for determining the algorithm’s 

accuracy are now possible. 

In addition to using the novel two-step GPS positioning algorithm developed in 

this dissertation, calculations were also performed using the conventional ILS algorithm 

to provide a comparison baseline.  Similar to our algorithm, in the simulation an 

enhanced ILS algorithm from [16] which uses all n available pseudorange measurements 
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to obtain the GPS solution is exercised.  Thus, the regressor, or H matrix, is the 

conventional matrix of direction cosines with a vector of 1’s populating the last column.  

The (n x 4) H matrix is a tall matrix, so the generalized inverse is used, resulting in a 

least-squares solution. 

 

2.8 Simulation Results 

The novel algorithm developed in this research was tested against the 

conventional ILS algorithm.  The results discussed in this dissertation are the cumulative 

representation of 5,000 Monte Carlo runs.  It was found experimentally that 5,000 Monte 

Carlo runs are enough for the average miss distance and its standard deviation to 

converge for the algorithms discussed in this dissertation.  To provide a fair comparison 

of the results from each approach, the Gaussian pseudorange noise realization for each 

satellite is kept the same between both algorithms for any given Monte Carlo run. 

The estimation results as a function of satellite availability are plotted in Figure 2 

and tabulated in Table 2.  “Miss dist.” is the experimentally determined 3-D distance 

between the true user position and the estimated position averaging over 5,000 Monte 

Carlo runs, and “std(miss)” is the experimentally determined standard deviation of “miss 

dist.” over the 5,000 Monte Carlo runs.  The predicted standard deviation of the miss 

distance is gauged according to 

 ( ) +++ ++=
332211

Pr uuu PPPmissstdedicted rrr  
 

where +
uPr  is the estimation error covariance matrix provided by the estimation algorithm. 
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All “miss dist.” results have been normalized with respect to the measurement 

noise standard deviation σ .  σ̂  is the average of the predicted values of σ , and std(σ̂ ) 

is the standard deviation of this average.  Both σ̂  and std(σ̂ ) have also been normalized 

with respect to σ .  The number of iterations and FLOPS are the experimentally recorded 

number of iterations and FLOPS required to produce the solution, averaged over the 

5,000 Monte Carlo runs.  

2.8.1 Iterative Least Squares Algorithm Benchmark 

The experimental average miss distance and its standard deviation produced by 

the ILS algorithm are used as a baseline for comparison to the algorithm presented in this 

dissertation.  The average non-dimensional miss distance is a function of the number of 

satellites in view and it ranged from 1.44 to 2.95 for this algorithm.  The experimentally 

obtained non-dimensional standard deviation of the miss distance is relatively small and 

it ranged from 0.72 to 1.65.  The average non-dimensional miss distance for the new 

algorithm ranged from 1.43 to 2.95, which is comparable to the results obtained by using 

the ILS algorithm. 

Irrespective of satellite availability, it took the ILS algorithm 5 iterations to 

converge to the required threshold for accuracy.  During our experiment, FLOPS counts 

ranged between 3119 and 5503 for the ILS algorithm while the close-form algorithm 

produced FLOPS counts between 3061 and 5017.  The variance in FLOPS is a function 

of the size of H, which changes as a function of satellite availability; of course the “miss 

dist.” decreases as the availability of satellites in view increases. 
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Table 2. Average Results from 5,000 Monte Carlos Runs 
 

n  = 4 n  = 6 n = 7 n = 8 n = 9  

ILS 
Alg.  

New 
Alg  

ILS 
Alg.   

New 
Alg 

ILS 
Alg.   

New 
Alg 

ILS 
Alg.   

New 
Alg 

ILS 
Alg.   

New 
Alg 

σσ /ˆ   N/A 0.81 0.89 0.93 0.94 

std(σ̂ ) / σ  

 

 N/A 
 

0.60 
 

0.47 
 

0.40 
 

0.35 

Experiment 
RMS(miss) / 

σ  
 N/A   2.24   1.92   1.61    1.63 

Predicted 
std(miss) / σ   N/A  2.15  1.97  1.64  1.72 

No. of 
Iterations 5 5 5 3 5 3 5 3 5 3 

FLOPS 3139 3061 4115 3080 4535 3675 5013 4194 5503 5017

 

2.8.2 Novel Algorithm Results 

From a performance point of view, the novel two-step algorithm produced results 

comparable to the baseline ILS results.  As shown in Table 2, the experiment RMS miss 

distances resulted from the two-step algorithm are similar to those yielded by the 

predicted standard deviation of the miss distance. There is an apparent trend that as more 

satellites became available, the error got smaller, with the exception of an abnormally at n 

= 9.   

 Furthermore, the two-step algorithm takes only three iterations to produce a 

position estimate and a prediction of the estimation error covariance, while the 

conventional ILS algorithm takes five iterations to produce only the position estimate.  

As a result, the FLOPS count for the two-step algorithm is consistently lower than the 



 

 51

FLOPS count for the ILS algorithm.  Concerning the n dependence of the FLOPS count, 

we see that the miss distance decreases as n increases.  Very good results are obtained for 

n ≥ 7.  However, even though the FLOPS count of both algorithms are proportional to 

satellite availability (n), the FLOPS count of the two-step algorithm increases at a faster 

rate.  This is due to the estimation of σ  in the novel algorithm, which requires operations 

on (n – 1) x (n – 1) matrices.    

Concerning the number of iterations in the novel algorithm, the novel algorithm 

could be hard wired to only two iterations instead of three to lower the FLOPS count 

even further.  Experimental results show that if the number of iterations is reduced to 

two, the average miss distance and the estimation error covariance remain practically 

unchanged for n ≥ 7 and slightly change for n = 6. 

2.8.2.1 Unconventional Geometries 

It is interesting to exercise the algorithm in unconventional high-GDOP scenarios 

where conventional iterative algorithms tend to have difficulties.  This type of scenario 

can be expected in test range applications ([20] and [21]).  In this dissertation, the 

experimental test environment consists of a simulated ground planar array of 36 

pseudolites evenly spaced in a circular pattern with a 10,000 meters radius and one 

pseudolite at the center.  This pattern was selected because it represents the best 

achievable ground array for the conventional ILS algorithm if the user is directly above 

the center pseudolite [21].  This number of pseudolites was selected to achieve satellite 

availability levels that allow for evaluation of the algorithm’s estimation capability. 
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In the simulations, the user position was 10,000 m directly above the center of the 

circular pattern, and the center pseudolite was moved away from the center to vary the 

geometry.  In this test environment, the conventional ILS algorithm produced fairly good 

estimates of the four GPS parameters with a pseudolite directly below the user; however, 

the estimates quickly degraded as the center pseudolite was moved away from directly 

below the user, and it failed to produce a solution when the center pseudolite was offset 

by more than 400 m. 

 

Figure 3. Optimum Ground-Based Planar Array  
 

Unlike the results obtained for the typical near-earth GPS scenarios, the 

estimation of the 2-D ux, and uy user position coordinates was extremely good, with mean 

errors similar to those obtained with the conventional ILS algorithm; however, the user 

altitude (uz) mean estimation error was very large, ranging from 2.9 x 105 meters to 1.1 x 
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106m.  Given the extremely low estimation errors in the ux and uy user position coordinate 

estimates, it appears that the geometry produced by pseudolite ground planar arrays is 

bias.  More research will be needed to fully characterize any potential usefulness of the 

closed-form algorithm for this application.   

Table 3. Ground Test Results from 5,000 Monte Carlos Runs 
 

 Scenario Centered Tx Offset = 0m Centered Tx Offset 
= 400m 

Close-Form Estimated σ 95.56 95.22 
 Error x -0.53 0.12 
 Error y 0.64 -0.14 
 Error z 293416 1113025 
 Miss distance 293416 1113025 
Kalman –like 
Update 

Error x -0.52 0.17 

 Error y 0.44 -0.90 
 Error z -10152 -9872 
 Miss distance -10152 -9872 
Iterative Least 
Squared 

Error x -0.57 0.27 

 Error y 0.68 0.19 
 Error z 0.39 11.46 
 Miss distance 0.97 11.47 

 
Taking the estimates produced by step 1 and applying the Kalman update 

algorithm in step 2 improved the estimate of uz.  However, the error in uz was still too 

large to render its estimate useful.  Moreover, ux and uy were slightly affected, sometimes 

for the worse and other times for the better. 

Based on the results, the Kalman update (step 2) does not prove very useful in this 

ground planar array test environment as it does not provide any significant improvement 

over the closed-form algorithm (step 1).  It is noted that the user altitude (uz) estimation 

error also increased from 0.39 to 11.46 for the ILS algorithm.  Hence, both the ILS and 
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the two-step algorithm do not yield good estimates when our planar arrays of pseudolites 

is used and the center pseudolite is offset by 400 m from the center of the array.  
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III Stochastic Model-Based DGPS Estimation 

Algorithm 
 
 
 

This chapter presents the development of the kinematic differential GPS 

algorithm for a network of users, the experiment setup, and simulation results from a 

5,000 Monte Carlos runs. 

 
 

3.1 Introduction 

A novel kinematic differential GPS algorithm is presented to process GPS 

pseudorange measurements from multiple receivers obtained during multiple 

measurement epochs. Specifically, the accurate relative (and absolute) positioning of a 

team or formation of mobile vehicles is considered, and a general navigation web concept 

is advanced. The measurement situation is modeled under a stochastic framework, and, 

rather than differencing and double differencing as is currently practiced in conventional 

DGPS, the common errors are explicitly acknowledged and a centralized estimation 

algorithm is derived.  In addition, the predicted covariance of the different receivers 

position estimation errors is obtained.  Extensive simulations were performed to validate 

the novel kinematic DGPS algorithm. The results were compared to conventional DGPS 

scenarios, where the reference stations are stationary or there was only one available 

observation epoch.  The positioning accuracy improvements achieved were gauged 

against the performance of conventional DGPS. 
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3.1.1 Background 

There are a large number of applications requiring the ability to obtain real-time 

kinematic positioning of high altitude formation-flying vehicles which include Low Earth 

Orbit (LEO) military satellite formations for earth observation/surveillance [29].  

Therefore, formations of satellites might replace large complex satellites and allow lower 

overall cost and a higher degree of redundancy [30]. Research is being conducted to 

replace or augment the existing inertial navigation systems on board satellites with GPS 

receivers to allow meeting the stringent positioning requirements for the formation.  

While the majority of current research is focused on utilizing carrier phase GPS 

techniques to acquire position and velocity information for each epoch [30, 31, 32, 33, 

34], this study will examine the general principals and trends in utilizing pseudorange 

measurements only over a series of measurement epochs. 

3.1.2 Problem Statement 

GPS positioning accuracy is limited by measurement errors that can be classified 

as either common mode or non-common mode. Common mode errors have nearly 

identical effects on all receivers operating in a limited geographic area, as is the case in 

formation flight.  The common mode errors are the satellite ephemerides errors, the 

satellite clock errors, and the effects of the ionosphere and troposphere. Non-common 

mode errors are distinct even for two receivers with small antennae separation and consist 

of receiver noise and resolution, multipath effects, and inter-channel bias, etc. 

The DGPS navigation concept is based on the realization that close-by (< 50 km) 

GPS receivers are equally affected by the common errors. Conventional DGPS uses a 

reference station at a known ECEF position to determine corrections that other local, and 
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potentially mobile, GPS receivers within close range (≤ 50km) of the reference station 

can use to reduce the effects of GPS common mode errors.  Standard DGPS navigation 

exploits the known position of a reference station and the existence of a communications 

channel to the moving vehicle (the “rover") to broadcast corrections to the GPS receiver 

on the rover, thus improve the latter's positioning accuracy. In its most basic form the 

DGPS methodology entails the application of reference station broadcast differential 

corrections to the user (rover) measured pseudoranges. Alternatively, the positioning 

error measured by the reference receiver is directly subtracted from the rover’s position 

measurement.  Thus DGPS yields a stand-alone and improved user (rover) position 

estimate [35].   

3.1.3 Summary of Current Knowledge 

Using GPS for relative and absolute positioning of formation flying vehicles is 

relatively new [30, 31, 32, 33].  The majority of the current research involves utilizing the 

Carrier Phase DGPS techniques for tracking and controlling vehicles.  Simulated results 

indicate that ≤ 2cm rms position errors are possible [31]. 

3.1.4 Scope 

The positioning error in DGPS is caused by receiver noise and resolution, 

multipath, and inter-channel bias, etc.  Multipath error is addressed by carefully choosing 

the antenna’s location, using choke ring antennae, and applying advanced signal 

processing techniques. Hence there is a strong incentive to develop methodologies for 

mitigating the effects of measurement noise and residual errors in DGPS. Obviously, an 

approach which relies on averaging out  the random measurement noise and residual 

errors is called for.  In Kinematic GPS (KGPS), the mitigation of the random residual 
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errors and measurement noise induced effects can be addressed by several approaches.  

One approach is the application of a kinematic model to user motion and clock error 

during the (short) measurement interval.  The other possible approach is the use of a 

measurement record obtained over multiple observation epochs. The third potential 

approach is the centralized processing of the GPS pseudoranges taking into account the 

underlying temporal dependence of the kinematic variables. Hence, improved user 

position, velocity, and possibly, acceleration estimates are obtained. This improvement in 

navigation performance is obtained irrespective of whether differential corrections, as 

provided by DGPS, are applied to the raw pseudorange measurements. Thus, in this 

research KGPS is used to mean not just a mobile user, but also the application of a 

dynamic model to rover motion. 

Hence, provided that a communications channel from the reference station to the 

user is established and a measurements record obtained over multiple observation epochs 

is available, one is strongly motivated to combine KGPS and DGPS. In this way, 

improved user position, velocity and acceleration estimates are obtained by virtue of 

employing KGPS while, at the same time, the ill effects of measurement noise and 

residual errors are mitigated and the maximum benefit is extracted out of DGPS. In this 

dissertation the concept of synergistically employing DGPS and KGPS navigation in a 

monolithic computational algorithm is undertaken. The developed algorithm is referred to 

as Kinematic Differential GPS (KDGPS). Specifically, the DGPS scenario with one 

reference station at a surveyed position is referred to as conventional KDGPS. The DGPS 

scenario with multiple reference stations at known locations is referred to as augmented, 

or network, KDGPS. When the navigation of a team of mobile vehicles (rovers) is 
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considered, such that now the “reference stations" are mobile and their positions, along 

with the user's position, are not known and need to be determined, we then refer to 

relative, or generalized KDGPS.  The latter is the object of this research.  

In conventional DGPS, a “team" consisting of two members only is considered, 

viz., the user and the reference station. Also, a one-way communications channel between 

the reference station and the user is established. In conventional DGPS the reference 

station is stationary and it is located at a known (surveyed) position. When navigating 

near an array of stationary reference stations which surround the rover, the ionospheric 

corrections transmitted to the rover are calculated by interpolating the corrections 

computed by the GPS reference stations – one then refers to network DGPS [36].  The 

corrections to the pseudorange measurement errors are obtained using the conventional 

method of differencing and double differencing.  All available a-priori information 

should be used. The ionospheric error can be reduced using modeling and interpolation. 

However, since the many GPS users use single frequency receivers, the residual 

ionospheric errors remain a concern. Furthermore, predicted satellite ephemerides and 

predicted satellite clock error corrections, as provided by NASA’s Internet-based Global 

Differential GPS (IGDG) system which uses a world wide network of stationary 

reference stations, should be applied [37], [38]. At the same time, as it is desirable to 

move from meter level to centimeter level positioning in the relentless quest for higher 

accuracy, residual errors after DGPS correction cannot be neglected.  

In this research we are mainly interested in a scenario where the GPS receivers 

are on vehicles, and multiple rovers in close proximity must be accurately positioned 

relative to each other, as in satellite or aircraft formation flight control. One then refers to 
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relative GPS [39, 40, 41].   However, rather than using the conventional differencing and 

double differencing method [39, 40, 41], in this research a stochastic modeling 

framework is used where the common errors are explicitly acknowledged and treated as 

parameters to be estimated. The use of multiple GPS receivers which are connected by a 

two-way data link and centralized processing of the measurements using statistical 

methods of parameter estimation has the potential to significantly improve the quality of 

the navigation solution. The correct treatment of the common GPS errors in a centralized 

computational algorithm is a very important concept. Thus, in this research ILS, linear 

regression, and the Singular Value Decomposition (SVD) method are used, and a more 

general DGPS paradigm is established where the concept of a reference station is done 

away with and a team of m users is considered. All the team members are treated as 

equals, and the designation of a reference station is not needed. Moreover, the 

requirement that one member of the team is stationary and at a known position is done 

away with. In our estimation algorithm, the inclusion of prior information on the 

reference stations’ positions is allowed for, as in network adjustment in surveying [42], 

and the theory of conventional DGPS is recovered.  In addition, the predicted covariance 

of the rovers’ positions estimation error is obtained. 

The pseudoranges to the n satellites in view measured by all the receivers are 

communicated to a central processor and are operated on by a centralized (optimal) 

estimation algorithm, where the common errors are properly accounted for, thus 

obtaining improved estimation performance. The central processor then communicates 

the correct position to each of the team members. Concerning communication needs: The 

central processor operates on all the m team members' (m x n) pseudoranges, and returns 
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the estimated positions, velocities, and accelerations, of each of the m vehicles. The use 

of an architecture which employs a centralized processor reduces the number of required 

two-way communication channels from m(m - 1)/2 to m. Of course, the centralized 

processor could reside in one of the formation's vehicles, i.e., in the “leader", in which 

case only (m – 1) two-way communication channels are required.  Evidently, 

 2mfor                   1) - m(m 1/2   1 - m ><  (3-1)
 
Thus, a novel navigation web concept is advanced. Also, the navigation web 

development is motivated by self-calibration measurement methods from physics and 

surveying. For example, in [21] the self-calibration concept was exploited for GDOP 

reduction in a pseudolites-based measurements scenario. In geodesy, [42], the positioning 

accuracy of a network of surveyed landmarks is enhanced using additional angle and 

elevation measurements. However, the common errors in the pseudorange measurements 

are not explicitly acknowledged and are addressed using the conventional differencing 

and double differencing method. In this dissertation, the application of stochastic 

modeling to DGPS positioning is pursued, and the required mathematical development is 

presented. Indeed, improved relative and absolute position estimates for all the team 

members are obtained.  

3.1.5 Main Contribution 

For a special case of a conventional DGPS scenario and in a deterministic world, 

the results obtained by standard double differencing will be the same as those provided in 

this dissertation - if the effects of nonlinearity caused by linearization in the commonly 

used ILS algorithm are not considered, and without an estimate of the position error.  

After all, if it all comes down to a solution of a linear deterministic system, then whether 
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one differences to eliminate the common variables using either Gauss elimination or uses 

matrix inversion, the result is the same - provided that numerical problems are avoided.  

The latter is guaranteed if the condition number of the measurement matrix is sufficiently 

low, which is the case in GPS when the GDOP is low.   

In practice, the pseudorange measurements are corrupted by random measurement 

noise and residual errors.  Hence, in this research the emphasis is on the stochastic 

modeling of the DGPS measurement situation at hand.  By falling back on the classical 

statistical theory of linear regression, ILS and SVD method, the DGPS problem is 

correctly formulated and a state (e.g. position) estimate is rigorously obtained, including 

a prediction of the variance of the estimation error.  Moreover the SVD method adapted 

from numerical analysis yields insight into the structure of the DGPS problem, in 

particular when there is no designated reference station and all users are mobile in which 

case good relative positioning is achieved.  In addition, treating the common errors as 

parameters to be estimated also yields estimates of the clocks’ relative errors. In relative 

GPS good estimates of the relative positions of the rovers are obtained, however, it is not 

the relative positions, but rather it’s the clocks’ relative errors that are directly estimated. 

In summary, using stochastic modeling, a general Kinematic DGPS algorithm is 

developed with the following qualities:  

• No stationary reference station is envisaged and a mobile users’ formation is 

considered.  Improved relative positioning is achieved.  This is often all one is 

interested in, as in formation flight control. 

•  The standard and network DGPS scenario are special cases.  Improved 

absolute positioning is then achieved. 
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• DGPS is applied to KGPS.  Thus, in this research DGPS and KGPS are jointly 

considered in a unified mathematical framework. 

• The simulation experiments are carefully calibrated.  Obviously, the 

positioning accuracy is of interest, but in addition the predicted covariance of the 

state/position estimation error is also derived and is compared with the 

experimentally measured estimation error covariance.  Having a correct predicted 

estimation error covariance is particularly important if GPS measurements are to 

be blended with measurements provided by other sensors, as in INS aiding.  The 

mathematical result concerning the probability that a measurement will fall inside 

the multidimensional 1-σ error ellipsoid is not well known, even in statistical 

circles.  In two dimensions it is always 39%, irrespective of the covariance.  This 

result is provided in the Appendix and was used to calibrate the experiments for 

this research. 

• Interesting applications of DGPS, such as when all the users are mobile and 

there is no stationary reference station as in relative DGPS, are listed in the 

conclusions. 

3.1.6 DGPS Novel Algorithms 

       Algorithms for the following navigational scenarios are derived: 

• Augmented conventional/network DGPS (ADGPS): n satellites, one user, m 

(1 ≤ m) stationary reference stations at surveyed locations, one (N = 0) 

measurements epoch.  
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• Augmented Kinematic DGPS (AKDGPS): n satellites, one user, m (1 ≤ m) 

stationary reference stations at surveyed locations, N + 1 (1 ≤ N) measurements 

epochs. 

• General Kinematic DGPS (GKDGPS): n satellites, one user, m (1 ≤ m) mobile 

reference stations, N + 1 (1 ≤ N) measurements epochs.    

The GKDGPS scenario can also be viewed as entailing: n satellites, a team of m 

(m ≥ 2) mobile users, N + 1 (N ≥ 1) measurements epochs.  Two approaches to KDGPS 

are developed:  

• The indirect approach to KDGPS, where standard DGPS corrections are 

applied to the pseudoranges and snapshots of the vehicle's position are initially 

calculated. Subsequently the KGPS fitting methodology is applied to mitigate the 

deleterious effects of measurement noise; and,  

• Direct KDGPS, where the reference receivers' provided pseudoranges data 

and the users' pseudorange measurements are jointly processed in a centralized 

algorithm.  

Obviously, both in DGPS and in KGPS, the correct treatment of common errors is 

most advantageous. This, in turn, requires a centralized computational algorithm.  Linear 

regression and ILS from statistics and the SVD method from numerical analysis are used 

with the payoff being improved estimation performance. This is the rationale for direct 

KDGPS.  In this research the emphasis is on the direct approach.  
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KDGPS algorithms are presented where the ILS approach to the solution of the GPS 

trilateration equations is used.  The alternative direct approach [22] to the solution of the 

GPS trilateration equations can also be used.  

 

3.2 Theory 

This section describes the theory behind the development of the stochastic model- 

based DGPS estimation algorithm tested in the Monte Carlo simulations. 

3.2.1 Overview 

Conventional DGPS implementations typically employ a GPS receiver at a 

precisely known location (reference, or base, station) to observe the common mode errors 

in the pseudorange measurements from each satellite. The differential corrections 

calculated from these errors are then transmitted to all users within the vicinity. The base 

station is usually an all-in-view receiver that computes and transmits corrections for all 

visible satellites. A DGPS remote receiver then performs acquisition and tracking using 

normal operations, but it applies the received corrections to each pseudorange 

measurement prior to computing its position solution. In this manner, absolute position 

accuracies much better than the GPS precise positioning service (PPS) level are achieved. 

The Radio Technical Commission for Maritime Services (RTCM) standard for 

DGPS corrections [43] makes the following recommendations: 1) A reference station 

should not attempt to remove the effects of ionospheric and tropospheric errors from the 

broadcast corrections. 2) The effect of reference station receiver clock error should be 

removed from the broadcast corrections. 3) The effect of satellite clock error modeled by 
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the standard polynomial correction applied at the rover's receiver should be removed 

from the broadcast corrections. 4) The reference station antenna should be sited or 

augmented with additional hardware, e.g., a choke ring, and the corrections are processed 

to minimize the effects of multipath.  

Also, it is assumed that all measurements are taken simultaneously. Latency 

issues are not addressed. 

The pseudorange from satellite i measured by user kth receiver is conventionally 

modeled as  
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where τk is the kth receiver range-equivalent clock bias, τ_si is the ith satellite range-

equivalent clock bias, E represents the ephemeris (or SA induced) error, Δion represents 

the ionospheric error, Δtrop represents the tropospheric error, and vi
(k)represents the 

receiver ith channel measurement error. The last three terms in equation (3-2) represent 

the common mode errors. They are referred to as such because they affect all receivers, 

including the reference station(s), in a limited geographic area, in the same manner.  

In conventional DGPS navigation the reference station broadcasts real-time 

(pseudorange) corrections that enable a GPS user to eliminate the effects of the common 

mode errors from his positioning solution. The extent to which this objective is achieved 

depends on the ability of the reference station to separate the common mode and non-

common mode errors.  

A reference receiver at an accurately surveyed location (x, y, z) can calculate the 

reference-to-ith satellite range as  
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The range differential correction for the ith satellite is determined by differencing the 

calculated and measured reference-to-satellite ranges:   

 )(ˆ
iii isDGPS itroponiii vERR +Δ+Δ++−−=Δ τ  (3-4)

 
The sign of ΔDGPS is motivated by the RTCM DGPS standard [43] which states that the 

correction will be added by the remote user. 

Based on the RTCM specifications, the broadcast corrections should be corrected 

to remove the reference receiver and modeled satellite clock errors. Equation (3-3) shows 

the actual reference station calculation in conventional DGPS and equation (3-4) shows 

the remaining error sources in the transmitted correction. Therefore, the broadcast 

correction will take the form of equation (3-4). Note that the ΔDGPS signal contains the 

desired common mode error sources, which will cancel the corresponding errors in the 

user position calculation.  

It is possible to do temporal filtering of the basic DGPS corrections before they 

are broadcast to the user. The purpose of the preliminary filtering is to reduce the non-

common mode receiver measurement noise prior to broadcast. The basic correction for 

each in view satellite is then processed by its own Kalman filter. Reference station 

algorithms which entail the temporal filtering of the basic DGPS corrections before they 

are broadcast to the user are not addressed in this research. However, in this research, the 

KGPS concept is synergistically applied to DGPS in a centralized estimation algorithm. 
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3.3 Novel Kinematic DGPS Algorithm 

 
 This chapter provides a detailed description of the novel kinematic DGPS 

algorithm developed to estimate user position and velocity for a network of users.   

3.3.1 Overview 

The development of a GPS based relative position sensing system is undertaken, 

with application to aircraft or spacecraft formation flying.  Accurate real-time solutions 

for the relative vehicle positions are required. Thus, this research addresses the general 

case where all sites are in motion with respect to the earth and to each other, a situation 

we refer to as general kinematic differential positioning (GKDGPS). There are also 

terrestrial applications for which precise relative positioning is desired between two sites, 

both in motion and both far enough from fixed land based sites that conventional DGPS, 

as described in the previous section, is not feasible. This application might involve the 

precise determination of the distance between two ships far out at sea. If both carry GPS 

receivers, the precise relative track between the two could be determined by processing 

the data with the GKDGPS algorithm. The same applies to formations of land, air, or 

space vehicles.  

Centralized estimation is pursued: The GPS measurements from all vehicles are 

collected and one solves for the state of the entire formation. All the measurements must 

be combined to resolve the entire formation state. Thus, a novel web-based navigation 

concept is developed. This concept provides optimal estimates of the formation's state.  In 

a large formation, high communication rates might be required in order to transfer the 

large amounts of raw GPS data as is required in DGPS. 
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3.3.2 Problem Statement 

Two or more mobile users are considered over a pre-specified, presumably short, 

time interval. The number of users and the specific GPS satellites in view are held 

constant during the measurement interval. Only pseudorange measurements are used.  

A specific case with two users is developed to demonstrate the applicability of the 

novel algorithm.  At the beginning of the time interval, prior information on user 2's 

position (and velocity) is available. Pseudorange data is collected over several epochs 

during the measurement interval.  A fixed sampling rate is used. The prior information 

and all pseudorange measurements are processed simultaneously at the end of the 

measurement interval and estimates of the position and velocity of both users 1 and 2 are 

obtained. The effect of having varying degrees of uncertainty in user 2's “reference 

station" prior position information is examined. In addition, the effect of receiver noise 

on the algorithm's ability to correctly estimate the users' positions and velocities in the 

presence of user and satellite clock errors - the latter, resulting from Selective 

Availability (SA) if it were turned back on - is investigated.   

3.3.3 Theory  

The developed novel algorithm integrates kinematic modeling and differential 

GPS. This is achieved by maximizing the use of the information in the pseudorange 

measurements from m users receiving n satellites that are available at N + 1, relatively 

close, time instants during the measurement interval. The correct treatment of the 

common (satellite clock) errors and proper stochastic modeling of the measurement 

situation on hand are responsible for achieving improved user positioning.  
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A sampling interval of ΔT seconds is used. The duration, T, of the measurement 

interval consists of N + 1 discrete measurement epochs. Thus, the time instants when 

measurements are taken are 

 N , 1, 0,  j  , j. T t j K=Δ=  (3-5)
 
The number of epochs available over the duration of the measurement interval is N + 1, 

where 

 T / T N Δ=  (3-6)
 
For the short measurement duration being stipulated, the users' kinematics are 

modeled as constant speed and rectilinear motion 

  tV x  (t)x kokk

rrr
+=  (3-7)

  
where k = 1, 2,…, m and m is the number of users; kxr , okxr , kV

r
 ∈ R3. The kinematic 

model could include higher order terms such as acceleration, jerk, or more importantly, 

could represent a more complex motion, e.g., a satellite trajectory parameterized by its 

orbital parameters. However, for the generic scenario examined in this research, equation 

(3-7) will be the kinematic model chosen for the users' motion.  

The pseudorange from the kth user to the ith satellite at time t is modeled as  

 [ ] [ ] [ ]
is

222)(
i )()()()()()()( ττρ ++−+−+−= ksksksk

k tztztytytxtxt
iii

 (3-8)
 
and the measurement equation is  
 
 )()()( )(

i
)(

i
)(

i tvttZ kkk += ρ  (3-9)
 
where  
 

• kτ  is the kth user range-equivalent clock bias with mk ...,,2,1= .  
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• 
isτ is the ith satellite range-equivalent clock bias with ni ...,,2,1= . 

•  )z,y,(x
iii sss  is the ith satellite position at time t from the ephemeris data with 

ni ...,,2,1= .  

• ))(),(),(( tztytx kkk  is the kth user position at time t with mk ...,,2,1= .  

• i  is the satellite number (the number of satellites in view is n).  

• )()(
i tv k is the measurement noise in the  ith channel of user kth receiver at time 

t.  

The measurement noise at time j is modeled as 

 ),0()( 2)(
j i, σNtv k ≈  (3-10)

 
and 
  
 ''')(

j ,i
)(

j i, ,,0)(
'

'' kkjjiiforvvE kk ≠≠≠=  (3-11)
 

Incorporating the kinematic model of equation (3-7) for the users' positions for 

each time instant j, i.e., setting  

 jTVxtx
kk )()(

xk0 Δ+→  (3-12)
 jTVyty

kk )()(
yk0 Δ+→  (3-13)

 jTVztz
kk )()(

zk0 Δ+→  (3-14)
 
where the subscript 0 denotes the initial position at time t = 0 (j = 0), allows equation (3-

8) to be written as  
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Note that in equation (3-15), t = jΔT, j = 0, 1, …, N.  To apply a kinematic model to the 

users’ clock errors, set ( ) , 0,1,...,k k kt T j j Nτ τ τ= + Δ =& . In the special case where two 

users (m = 2) and five (n = 5) satellites are considered, the parameter of interest is  

 
T

zyxzyx

TT

TVTVTVzyxTVTVTVzyx

],,,,,,,

,,,,,,,,,,,,,[

21sssss2

1000000

54321

222222111111

ΔΔ

ΔΔΔΔΔΔ=

ττττττττ

τθ

&&
 (3-16)

 
where 
 

• (
k0x ,

k0y ,
k0z ) represents the kth user initial (at time t = 0) ECEF coordinates, 

k = 1, 2, …, m.  

•  (
kxV ,

kyV ,
kzV ) represents the kth user velocity, k = 1, 2, …, m.  

• kτ  represents the kth user range-equivalent receiver clock error, k = 1, 2, …, 

m.  

• kτ&  represents the kth user velocity-equivalent receiver clock drift, k = 1, 2, .., 

m. 

• 
isτ  represents the ith satellite range-equivalent clock error, i = 1, 2, …, n. 

The parameter vector shown in equation (3-16) is θ  ∈ R21. In the general case, 

the parameter    

 θ  ∈ R8m+ n (3-17)
 
In the algorithm, the pseudoranges received are composed as follows. First, the 

pseudoranges received by the kth user from n satellites at time instant j are used to form 

the n x 1 vector 
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Now, composing the received pseudoranges over the N + 1 time instants yields 

the n (N + 1) x 1 vector  
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and finally, composing for the m users yields the mn(N + 1) x 1 “measurement vector"  
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The pseudorange expression, )(θρ , is composed similarly.  Define 
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and  
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We compose  
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Next, composing the N + 1 time epochs we obtain  
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and finally, composing for the m users yields the function f : R6m →  Rmn(N+1) , 
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The vector ρ  is similarly composed, thus obtaining the function )(θρ  : R8m+ n →  

Rmn(N+1).  The nonlinear GPS equations are  

 WZ += )(θρ  (3-26)
 
where the mn(N + 1) equation error W represents the composed measurement noise 

vector  
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with covariance provided in equation (3-11)  

 
)1(

2
1 )( +== Nmn

T IWWER σ  (3-28)
 

Linearization of equation (3-26) with respect to the parameter θ  at the thl  

iteration, about the current parameter estimate )(ˆ lθ , yields  
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Equation (3-29) is rearranged to yield the linear regression in θ   
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Note that as a result of our carefully performed linearization of equation (3-20), the LHS 

of equation (3-30) consists not only of the measurement vector Z, as is the case in 

conventional ILS, and two additional terms are included.  Obviously, when )(θρ is linear, 

there is no difference between our improved ILS algorithm and the conventional ILS 

algorithm, however when the nonlinearity is strong, the new ILS algorithm will 

outperform the conventional ILS algorithm. 

The calculation of the regressor matrix requires the composition of the partials of 

)(θρ  with respect to the parameter vector θ , viz., let  
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where )(
ji,

kH is a 1 x (7m + n) row vector.  Its entries are explicitly given by 
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where  

• ),,(
,,, jijiji sss zyx is the ith satellite ephemeris at time j.  

• )(),(),(,
,,, 321, jejejee
kikikiki are 8m+ 4n row vectors of zeroes, with 1's, j, and j2 

located at positions indicated in their subscripts, according to  

 347,37,671 )(
, −+−−= imkkeje
ki

 
 247,27,572 )(

, −+−−= imkkeje
ki

 
 147,17,473 )(

, −+−−= imkkeje
ki

 
 imkki ee 47,7, +=  
 

• The matrix  

 )()()()()()()(
,,,,,, 332211ki, jejejejejejejE
kikikikikiki

TTT ++=  (3-33)
 

The composition of the regressor matrix is similar to the process employed for Z and 

f.  First, for the n satellites, the n x (7m + n) matrix  
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is formed, followed by composition over the N + 1 time epochs yielding the n(N + 1) x 

(7m + n) matrix 
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Next, set  

 ])([:)( 1
)()( HHH kk θθ =  

 
where all the entries of the n(N + 1) x n matrix H1 are 0, except its kth column which is (0, 

1, 2, …, N) T, and finally, for the m users, the mn(N + 1) x (8m + n) regressor matrix  
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is obtained. Thus Equation (3-29) yields the linear regression  
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The function )(θρ : R8m+ n → Rmn(N+1) is linear in the users' and satellites' clock error 

parameters and therefore the function )(θρ  is replaced by the function )(θf in the LHS 

of equation (3-37).  

The solution for the users' “positions", viz., the parameter vector θ , may be obtained 

using least squares, whereupon the Iterated Least Squares (ILS) algorithm is established:  
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where  

• Z is the received “stacked up" pseudorange measurements mn(N + 1) x 1 

vector, according to equation (3-20).  

• f is the mn(N + 1) x 1 vector of ranges calculated according to equation (3-21).  
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• H is the mn(N + 1) x (7m + n) regressor matrix formed from the partials of ρ  

according to equation (3-36). 

3.3.4 Reduced parameter vector 

The regressor H is further examined.  As stated in equation (3-16), the parameter 

vector contains (8m + n) variables: 3 position components, 3 velocity components, a 

clock bias variable, and a clock drift variable for each of the two (m = 2) users, as well as 

the five (n = 5) satellite clock errors - 21 variables in total. The main objective is to 

estimate the (non-reference) users' position and velocity rather than the users' and 

satellites' clock errors. With this in mind, the regressor's matrix structure is examined and 

the algorithm is modified according to the following analysis. To simplify the exposition, 

the users clock drifts are not considered herein and the reduced parameter vector has the 

dimension 7m + n 

Define the mn(N + 1) x (m + n) matrix  

 ],...,,,,...,,,[ 321321 nccccbbbB =  (3-39)
 
where 

• kb  is the column of H operating on user kth clock error variable, k = 1, 2,…, m. 

• kc  is the column of H operating on satellite ith clock error variable, i = 1, 2,…, 

n.  

Indeed, the structure of the regressor matrix )ˆ( )(lH θ  is  

 ]))ˆ(~([ 1
)()( BHDiagH m

k
lk

== θ  (3-40)
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where the n(N + 1) x 6 matrices )(~ kH  are the )(kH  matrices with only the six columns 

(6k – 5), (6k – 4), (6k – 3), (6k – 2), (6k – 1) and 6k, retained; e.g., in the case where m = 

2, and therefore k = 1, 2  
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where the )1(~H and )2(~H matrices are explicitly given by the partials of f in 

),,,z,y,(x
111111 000 TVTVTV zyx ΔΔΔ  and ),,,z,y,(x

222222 000 TVTVTV zyx ΔΔΔ , respectively, 

and the matrix B is given by 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•

•

•

= =+

n

m
kNn

n

I

eDiag

I

B 1)1( )(  (3-42)

 
where 

• )1( +Nne  is a vector of ones of size (N + 1) x 1 . 

• nI  is an identity matrix of size n.  

For example, for m = 2,  
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The following holds  
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Obviously, the matrix B (and therefore, the regressor H) is rank deficient. The rank 

deficiency is exactly 1. Thus, perform the full rank factorization of B,  

 KBB 1=  (3-45)
 
where 1B  is full rank (m + n - 1) and is an mn(N + 1) x (m + n - 1) matrix of the form  
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For example, in the special case where m = 2 

 ]...,,,,,[ 1212111 −+= ncccbbbB  (3-47)
  
This choice of basis is responsible for inserting a column of ones in the regressor matrix 

H.  In the parlance of linear regression, an “intercept" variable is then included. The latter 

has the beneficial effect of absorbing truncation errors caused by the linearization of the 

RHS of equation (3-30). This basis choice also has the effect of yielding the estimates of 

clock error differences, as indicated in equation (3-37); however, we are mainly 

concerned with the estimation of user 1's position and velocity parameters.  

Solving equation (3-45) for K yields the blocked (m + n - 1) x (m + n) matrix  
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where  
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and  

• 0 is a zeroes matrix. 

•  ne  is a vector of ones of length n.  

Next, partition the regressor  

 ]~[ BHH =  (3-51)
 
where m

k
lkHDiagH 1
)()( ))ˆ(~(~

== θ  is an mn(N + 1) x 6m matrix consisting of the columns of 

H operating on the users' position and velocity parameters only. Also define the reduced, 

full rank, matrix  

 ]~[ 11 BHH =  (3-52)
 
Next, perform the full rank factorization of the regressor ])~[( BHH =  

 11KHH =  (3-53)
 
i.e., the following equation is solved for the (7m + n - 1) x (7m + n) matrix 1K  :  

 
111 ]~[]~[ KBHKBH =  (3-54)

 
We calculate:  
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Finally, the reduced parameter vector is defined  
 
 θθ 11 K=  (3-56)
 
The reduced parameter vector ∈1θ 7m+n-1 consists of the users' position and velocity 

parameters we are interested in, as well as linear combinations of the user and satellite 
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clock errors. For the specific scenario examined in which we have two mobile users and 

five satellites visible, this yields the (18 x 1) parameter vector 
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Since  

 1111 θθθ HKHH ==  (3-58)
 
equation (3-37) is written with the reduced parameter 1θ  :  
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where, in addition, the further reduced, (12 x 1), parameter vector is used  
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Thus, the further reduced parameter vector 2θ  is stripped of the clock error 

parameters of 1θ  , and 2θ  (and not 1θ ) is used on the LHS of equation (3-59) because the 

function f is not dependent on the time parameters. Accordingly, the matrix 2H  is 

composed of the first 6m columns of H  associated with the parameters featuring in 2θ  

(positions and velocities, no clock errors).   Thus, m
k

kHDiagH 1
)(

2 )~( == . 

With reference to equation (3-57) it is noted that not using differencing and 

double differencing as is standard practice in DGPS and instead treating the common 

errors as parameters to be estimated yields estimates of the clocks’ relative errors. In 

relative DGPS good relative position estimates are obtained but interestingly, it is not the 

relative positions, but rather, the clocks’ relative errors that are directly estimated. Should 
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laser ranging be available, as in the European GIOVE-A experiment, clock and 

ephemeris errors could be separated.  

3.3.5 Prior Information 

The linear regression featuring in the ILS algorithm can be augmented to include 

prior information on user 2 (position and velocity), as in the conventional and network 

DGPS [36, 38, 42]. The prior information is provided in the form  
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Using very large σ  parameters in equation (3-61) is tantamount to the stipulation that no 

prior information on user 2 initial state is available.  

The linear regression in equation (3-59) is now augmented as follows:  
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In addition, the regressor 1H  is augmented  
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where the 6 x (7m + n - 1) selector matrix is, e.g., in the case where m = 2,  
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parameter vector 1θ  . Moreover,  
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Additionally, a weighting matrix R is included to correctly incorporate the 

confidence level in the “reference " receiver's (user 2) prior information on position, 

velocity, and possibly, range equivalent clock error:  

 ),( 21 RRDiagR =  (3-69)
 
where  

 
)1(

2
1 += NmnIR σ  (3-70)
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is determined by the measurement noise variance σ , and the diagonal matrix 2R  

contains the prior information data, viz., the standard deviations of the reference station's 

initial position (and velocity)  
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where  
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This finally yields the enhanced ILS algorithm  
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and 

 l = 0, 1, …, L. 
  

Finally, if the satellite clock errors are known to high precision, as provided by 

NASA’s Internet-Based Global Differential GPS, and the residual errors can be isolated 

to the ionospheric delay, then the additional prior information (25,225)
iion NΔ ≈ can be 
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used based on the ionospheric retardation.  That is, the linear regression is augmented to 

include the equations 

 n , 1,  i),255,0(,25
ii K=≈+Δ= Nvv iion  

   
 

3.4 Simulation Results 

This section presents the simulation results and validates the algorithm's ability to 

correctly estimate the parameters of interest.   

 
3. 4.1 Simulation Scenarios 

In all the simulation scenarios two (m = 2) mobile users flying along parallel 

tracks, approximately 180 nautical miles (LEO) above the earth surface and separated by 

10,000 meters, are considered. The number of satellites in view is n = 5 and n = 8 to 

illustrate the effect of satellite availability. The normalized user velocities V ΔT are 

sec/100
21

mVV xx ==  and 0
2121
==== zzyy VVVV . In the simulation experiments 

the users' range-equivalent clock bias are fixed at m20021 == ττ , and all the satellites 

are subject to the same range-equivalent clock errors: nim
is ,...,2,1,100 ==τ  or 

nim
is ,...,2,1,30 ==τ . The number of measurement epochs considered varied between N 

= 1 and N = 11. In the case where N = 1, kinematic GPS is not possible and the users' 

velocities cannot be estimated. This scenario does however correspond to the 

conventional stand-alone DGPS paradigm and allows for a direct comparison to be made 

of the performance of the novel algorithm and the differencing-based conventional DGPS 

algorithm. 
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The random residual errors and receiver noise levels used in the simulation have σ 

of 0.75m, 1.50m, or 5.00m.  Ten iterations (L=10) for the ILS algorithm were performed 

for all scenarios. 

In the simulation experiments, the actual user 2 initial position is randomly 

chosen according to the specified normal distribution; the latter gauges our confidence in 

the user 2 prior position information. Both the nominal user 2’s initial position and the σ 

information are provided to the DGPS algorithm, but not the realized (actual) user 2 

position used to generate the pseudorange data given to the algorithm. The algorithm's 

estimation performance is gauged by measuring the distance of the computed position 

estimate from the actual true position which, of course, is known during the controlled 

simulation experiment. This applies to both user 1 and user 2.  For each simulation 

scenario, 100 Monte Carlo (MC) runs were performed.  

3.4.2 Numerical Results  

The DGPS algorithm's ability to accurately estimate the position of user 1 in the 

face of large satellite clock errors is strongly dependent on the accuracy of the reference 

station's position information. This is in particular true when the number of satellites in 

view, n, is 5. When the number of satellites in view is increased to n = 8, the estimation 

accuracy improves considerably, even in the case of one measurement epoch (N = 1) 

only. This is to be expected: when N = 1, the number of unknowns is 4m + n 1 = 4 x 2 + 

n 1 = 7 + n. The number of equations is mn = 2n. Evidently, to obtain a navigation 

solution using the novel algorithm we need 

 7 + n ≤ 2n (3-74)
  
i.e.,  
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 7 ≤ n (3-75)
 
At the completion of the MC experiment, the kth user position estimation error is: 
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where, unbeknown to the estimation algorithm, ),,( 000 kk

zyx k is the true initial position of 

user k and is used to generate the data in the simulation, which the estimation algorithm 

operates on, and )ˆ,ˆ,ˆ( )(
0

)(
0

)(
0

ppp
kkk

zyx  is the algorithm-produced position estimate in the pth 

MC run. The estimation error spread is gauged by the estimation error variance. The 

latter is provided by the estimation algorithm and is referred to as the predicted 

estimation error variance 2,1, =k
kpσ : 
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and similarly 
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Finally, the experimentally obtained estimation error variance is calculated as  
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The performance of the novel estimation algorithm is summarized in Tables 4 and 5 on 

the next page.  The user 1 position estimation error is less than 4 m even though the two 

users' range equivalent clock errors are m521 == ττ , the eight satellites' large range 

equivalent clock errors are 8,...,2,1,100 == im
isτ , the inaccuracy in the reference station 

(user 2) position is 5m and the relatively large receiver noise variance is 5m. 



 

 89

Table 4. Novel Algorithm Estimation Error & Accuracy [meters] with m = 2, n = 
8, N = 1, L = 10 for 1 epoch 

 
Referenced σ Noise σ e1 σP1 σE1 

0.0001 0.75 0.501 1.583 2.874 

0.0001 1.50 0.875 2.945 3.459 

0.0001 5.00 0.841 9.599 8.890 

0.75 0.75 0.502 2.003 5.204 

0.75 1.50 1.571 3.165 5.642 

0.75 5.00 0.353 9.664 10.489 

1.50 0.75 0.907 5.151 16.160 

1.50 1.50 2.944 5.615 16.442 

1.50 5.00 1.558 10.550 20.001 

5.00 0.75 2.535 10.073 31.425 

5.00 1.50 2.913 10.302 33.069 

5.00 5.00 3.930 13.354 36.874 

 
The estimation error is significantly reduced when five measurement epochs are 

used. In this case, and when the uncertainty in the user 2 position is small (Ref. σ  = 

0:0001), the following result is obtained in Table 5: 
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Table 5. Novel Algorithm Estimation Error & Accuracy [meters] with m = 2, n = 
8, N = 5, L = 10 for 5 epochs 

 
Referenced σ Noise σ e1 σP1 σE1 

0.0001 0.75 0.225 0.523 0.714 

0.0001 1.50 0.255 1.743 1.508 

0.0001 5.00 0.285 3.486 5.129 

 
Finally, the conventional DGPS algorithm's results are given in Table 6. As 

expected, the estimates in Table 5 are better than the estimates in Table 6. This applies to 

both the estimation error, and to the estimation error variance. 

Table 6. Conventional DGPS Estimation Error & Accuracy [meters] with m = 2, n 
= 8, N = 1, L = 10 for 5 epochs 

 
Referenced σ Noise σ e1 σP1 σE1 

0.0001 0.75 0.290 1.355 0.983 

0.0001 1.50 0.355 1.560 2.172 

0.0001 5.00 0.528 2.486 7.100 

 
Furthermore, with n = 8 satellites in view it is possible to obtain a good estimate of the 

users' relative positions even without prior information on the reference station's (user 2) 

position - as required in formation  control.   
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IV Conclusions 

 
 

This research presents the theories, models, and simulation results for a direct, 

closed-form and efficient new position determination algorithm developed for a stand-

alone user and the stochastic model-based DGPS estimation algorithm constructed for a 

network of mobile users.  The theoretical developments stochastically modeled the 

pseudorange measurement with random white noise and solved for position as a 

stochastic estimation problem.  The following sections present the conclusions obtained 

from this research. 

 
 

4.1 A Direct, Closed-Form and Efficient New Position 

Determination Algorithm 

The performance of the novel two-step algorithm is comparable to that of the 

baseline ILS algorithm. Furthermore, it retains all the attractive features that motivated 

the development of the closed-form algorithm in the first place.  Hence, considering the 

closed-form algorithm supplemented by the Kalman update algorithm as a single two-

step GPS position determination algorithm, a novel algorithm with the following 

attributes has been developed:  

• The performance under conventional navigation scenarios is comparable to 

that achieved by the conventional ILS algorithm. 
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• The algorithm is self-contained; hence it can be used under any geometrical 

conditions without the need for externally provided initialization, and a degree of 

autonomy is thus achieved. 

• The algorithm is computationally efficient because it requires less iteration 

than the ILS, and its FLOPS count is lower. 

• The algorithm has the capability to produce a data-driven estimate of the 

receiver measurement noise strength (σ ) when the number of satellites in view n 

≥ 6 and is able to predict its estimation error covariance. 

• Good estimated performance under conditions of high GDOP is obtained.  

The horizontal positioning performance of the novel two-step algorithm under 

poor geometry conditions, e.g. when ground-based planar arrays of pseudolites 

are used, is similar to that of the conventional ILS algorithm.  Moreover, there are 

no restrictions on the user position and an initial user position guess is not 

required as long as the user was within the confines of the outer radius of the 

circular pattern.  This may prove beneficial in testing range applications where the 

conventional iterative algorithm is at risk of failure, imposing restrictions on the 

flight test trajectory and altitude. 

In conclusion, the benefits of the two-step algorithms are computational 

efficiency, data-driven predictions of the noise strength of the pseudorange measurements 

and the estimation error covariance, no need for an initial position guess, and may 

provide better performance under poor geometry. 
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4.2 Stochastic Model-Based DGPS Estimation Algorithm 

In this dissertation a network-based navigation concept is advanced and a novel 

algorithm for KDGPS data processing is presented. Specifically, the accurate relative 

(and absolute) positioning of a team (or formation) of mobile vehicles is considered. The 

measurement scenario is correctly modeled, that is, a stochastic framework is developed 

where rather than using double differencing the common errors are explicitly 

acknowledged and a novel centralized estimation algorithm is rigorously derived. The 

novel DGPS algorithm estimates the users' positions and velocities utilizing only 

pseudorange measurements. One of the benefits of the novel algorithm is its ability to 

account for the uncertainty in the reference receiver's position and allows for the 

inclusion of the information on the reference user's position accuracy. Indeed, DKGPS 

exploits the same self calibration concept as DGPS to provide comparable accuracies in a 

dynamic environment. DGPS can provide enhanced positioning accuracies (on the order 

of 1m) by using a stationary base station, a.k.a, reference station, at a surveyed location. 

Unlike DGPS, KDGPS does not require a designated base station and consequently 

cannot improve absolute accuracies. Instead, it provides a similar degree of relative 

position accuracy between the mobile GPS-equipped platforms as required in formation 

control. A data driven estimate of the predicted covariance of the position estimation 

error is provided. Last but not least, insight into the structure of the estimation problem 

on hand is gained.  In relative DGPS good estimates of the relative positions of the rovers 

are obtained; however, it is not the relative positions, but rather, it’s the clocks’ relative 

errors that are directly estimated. 
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  Simulations entailing MC experiment validate the algorithm's ability to estimate 

the variables of interest.  The results are also compared to conventional DGPS scenarios, 

where the reference station(s) is (are) stationary and/or only one set of pseudorange 

measurements is available. The positioning accuracy improvements achieved with the 

novel algorithm are gauged against the performance of conventional DGPS.  

The generic nature of the mathematical development presented in this dissertation 

which entails stochastic modeling, the use of the method of linear regression from 

statistics, and the adaptation of the SVD method from numerical analysis are conducive 

to a broad range of applications of the estimation algorithm.  These entail 

1) Augmented conventional DGPS.  

a. Correctly treat measurement noise effects in conventional DGPS, where 

differencing causes the equation error variance to increase to 2 2σ  and correlation is 

introduced.  Furthermore, the equation error is no longer homoscedastic and a weighted 

ILS must be used. 

b. Treat ephemeris errors (not just satellite clock errors) as unknown parameters 

to be estimated.  

2) Formations of multiple spacecraft are envisioned for many planned space 

missions, and GPS will play an important role as a sensor. Tight control of the vehicles’ 

positions relative to each other is very important.  Formation technologies for spacecraft 

will enable multiple distributed spacecraft to act in a unified manner. This will enable 

new scientific missions involving distributed but coordinated measurements, leading to 

improved stellar interferometry, gravimetry, and synthetic aperture radars.  GPS, and, in 
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particular generalized KDGPS, provides a promising relative navigation sensor. Similar 

success is foreseen in aircraft formation flying applications.  

3) Relative GPS guidance, where a targeting system provides a moving target’s 

coordinates using an on-board GPS receiver for aiding its inertial reference system.  A 

GPS receiver is also on the weapon to track the same satellites as the GPS receiver on the 

targeting aircraft. Thus some of the GPS bias errors in the targeting data are removed and 

guidance accuracies can be improved to near “precision" level without the use of a 

terminal guidance seeker. 
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Appendix A: Acronym List 
 
AFIT  Air Force Institute of Technology 
AFRL  Air Force Research Laboratory 
CPGPS Carrier Phase Global Positioning System 
DCM  Direction Cosine Matrix 
ECEF  Earth-Centered, Earth-Fixed 
EKF  Extended Kalman Filter 
GPS   Global Positioning System 
INS  Inertial Navigation System 
PR  Pseudorange 
RMS  Root-Mean-Square 
SA  Selective Availability 
SV  Satellite Vehicle 
GDOP  Geometric Dilution Of Precision 
UERE  User Equivalent Range Error 
 



 

97 
 

 

Appendix B: Bivariate Gaussian Distribution 
 

To evaluate the performance of the novel algorithm, the probability of the position 

estimate to be within an ellipsoid was computed.  For a Bivariate Gaussian Distribution, 

the probability of the position estimates within the 1σ can be obtained as follows: 
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where T is the orthonormal transformation matrix for P.   The inverse of the error 

covariance matrix can be written as: 
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Now, if we let 
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where 

 
21)det( λλ=Γ  

  
Using the above relationships, the probability of the position estimate to be within the 
ellipsoid can be found as 
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irrespective of the covariance matrix P. 
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